PR-20. MICROWAVE ASSISTED SYNTHESIS OF *N*-SUBSTITUTED MALEIMIDE DERIVATIVES AS EXOGENOUS ANTIOXIDANT AGENTS

<u>A. Rammohan^{1, 2}</u>, J. R. Garcia², G. V. Zyryanov^{1, 3}

 ¹Ural Federal University of the first President of Russia B. N. Yeltsin, Mira St., 19, Yekaterinburg, 620002, Russia
² Department of Chemistry of the State University of Ponta Grossa, Av. Gal. Carlos Cavalcanti, 4748 – Uvaranas, Ponta Grossa – PR, Brazil, 84030-900
³ I. Ya. Postovsky Institute of Organic Synthesis UB RAS, S. Kovalevskoy/Akademicheskaya St., 20/22, Yekaterinburg, 620990, Russia

E-mail: rammohan4ever@gmail.com

The present work was aimed to synthesize a series of *N*-substituted maleimide derivatives have been developed *via* acetic acid mediated microwave reaction pathway [1, 2], which was identified as the incomparable method for the synthesis of maleimide compounds. All the synthesized compounds were tested for their antioxidant activity by DPPH and H_2O_2 assay [3]. Methoxy and amino attached compounds were displayed higher antioxidant activity in two methods. The structure-activity relationship demonstrated that the compounds having electron releasing substituent generally showed beneficial activity than electron capture substitution cores. These compounds may be useful as an exogenous antioxidant.

References

1. Rocchi D., González J. F., Menéndez J. C. Microwave-assisted, sequential four-component synthesis of polysubstituted 5,6-dihydroquinazolinones from acyclic precursors and a mild, halogenation-initiated method for their aromatization under focused microwave irradiation // Green Chem. Royal Society of Chemistry. 2013. Vol. 15, N_{0} 2. P. 511.

2. Microwave-assisted facile synthesis of trisubstituted pyrrole derivatives / Reddy V. Hanuman [et al.] // Res. Chem. Intermed. Springer Netherlands. 2015. Vol. 41, № 12. P. 9805–9815.

3. *Ruch R. J., Cheng S., Klaunig J. E.* Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea // Carcinogenesis. Vol. 10, № 6. Oxford University Press. 1989. P. 1003–1008.