
Linear Time Maximum Segmentation Problems
in Column Stream Model?

Bastien Cazaux1[0000−0002−1761−4354], Dmitry Kosolobov2[0000−0002−2909−2952],
Veli Mäkinen1[0000−0003−4454−1493], and Tuukka Norri1[0000−0002−8276−0585]

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
{bastien.cazaux,veli.makinen,tuukka.norri}@helsinki.fi

2 Ural Federal University, Ekaterinburg, Russia dkosolobov@mail.ru

Abstract. We study a lossy compression scheme linked to the biological
problem of founder reconstruction: The goal in founder reconstruction is to
replace a set of strings with a smaller set of founders such that the original
connections are maintained as well as possible. A general formulation
of this problem is NP-hard, but when limiting to reconstructions that
form a segmentation of the input strings, polynomial time solutions exist.
We proposed in our earlier work (WABI 2018) a linear time solution to
a formulation where minimum segment length was bounded, but it was
left open if the same running time can be obtained when the targeted
compression level (number of founders) is bounded and lossyness is
minimized. This optimization is captured by the Maximum Segmentation
problem: Given a threshold M and a set R = {R1, . . . ,Rm} of strings
of the same length n, find a minimum cost partition P where for each
segment [i, j] ∈ P , the compression level |{Rk[i, j] : 1 ≤ k ≤ m}| is
bounded from above by M . We give linear time algorithms to solve
the problem for two different (compression quality) measures on P : the
average length of the intervals of the partition and the length of the
minimal interval of the partition. These algorithms make use of positional
Burrows–Wheeler transform and the range maximum queue, an extension
of range maximum queries to the case where the input string can be
operated as a queue. For the latter, we present a new solution that may
be of independent interest. The solutions work in a streaming model
where one column of the input strings is introduced at a time.

Keywords: Pan-genome indexing, founder reconstruction, dynamic pro-
gramming, positional Burrows–Wheeler transform, range maximum queue

1 Introduction

Given a set of recombinants R = {R1, . . . ,Rm}, i.e. a set of strings of the same
length, a set of founders is a set of strings of the same length where all the
recombinants can be mapped on the founders for the common positions, i.e.
for each position k all the characters at the position k of the recombinants are
included in all the characters at the position k of the founders.

? This work was partially supported by the Academy of Finland (grant 309048)

2 B. Cazaux, D. Kosolobov, V. Mäkinen, T. Norri

Minimizing the number of crossovers, i.e. positions where recombinants need
to change between mapped founders, corresponds to the problem founder sequence
reconstruction [9,8,2]. As this problem is NP-hard [8,2], Ukkonen suggested taking
a polynomial variant of this problem through construction of a segmentation [9].
Here a segmentation is a decomposition of the set of recombinants into blocks.
For a partition P , the corresponding segmentation corresponds to a set of
segments where for [i, j] ∈ P , the segment of the interval [i, j] is the set of strings
{Rk[i, j] : 1 ≤ k ≤ m}.

Ukkonen proposed three different measures for segmentations of recombinants:
λmin (the minimum size of the intervals), λave (the ratio between the length of a
string of R and the number of segments) and λmax (the maximum of segment
sizes) and gave an optimal solution in O(mn2) time where λmin is bounded by
a given user-defined value M and λmax is minimized (Minimum Segmentation
problem) and an optimal solution in O(mn) time where λave is bounded and λmax

is minimized [9]. Norri et al. improved the first result to O(mn) time by using the
positional Burrows–Wheeler transform (pBWT) [3]. This problem corresponds to
finding the segmentation that minimizes the maximal segment size where each
interval of the corresponding partition have length bigger than a threshold K.

Ukkonen [9] proved that we can find in O(n(m+M3)) time a set of founders
which minimizes the number of crossovers in the case where all the segments
of the segmentation have the same size M . Norri et al. [7] apply the algorithm
of Ukkonen to the case where the segments have different sizes; experimental
results show that this approach works well in practice, although optimality is
not guaranteed in this case.

Instead of minimizing λmax where λmin is bounded as in the Minimum
Segmentation problem, in this paper we study the problem where λmax is bounded
and we want to maximize λmin or λave. In other words, we take the dual problem of
Minimum Segmentation problem where we bound the maximum size of segments,
i.e. the number of founders, and we want to optimize the partition corresponding
to this segmentation (either maximize the size of the minimal interval of the
partition or minimize the number of intervals). This formulation is motivated
by the ability to control the size of the pan-genome index proposed in [10]:
Multiple alignment of thousands of human genomes can be replaced with a
multiple alignment of founders. We demonstrated in [7] that reduction from
5009 sequences to 130 founders gives average distance 9358 bases between two
crossovers. Such preservation of continuity is sufficient for the approach in [10].
With our new formulation, we can directly control the target number of founders
without needing to try out different bounds for the segment length. In more
general terms, the approach can be seen as a lossy compression scheme, where
the targeted compression level (number of founders) is fixed and the compression
quality (preservation of continuities) is optimized. Such general formulation might
find other applications beyond genome research.

We propose two different algorithms to solve maximization of λmin and λave,
respectively. In Section 3, we give a greedy algorithm which finds an optimal
solution in O(mn) for the first problem and in Section 4, we present a dynamic

Linear Time Maximum Segmentation Problems 3

programming algorithm using a Range Maximum Queue to solve the second
problem in linear time. The Range Maximum Queue is an extension of min-queue
[5]. A min-queue supports minimum value queries on queue in constant time,
with the update operations taking also constant time. Our structure supports
querying maximum value over a range of items in the queue in constant time,
with the update operations taking amortized constant time.

We consider all of the Maximum Segmentation problems in a specific streaming
data model. As every input of the Maximum Segmentation problems consists of
a bound and a set of strings of the same length, we define the Column Stream
Model such that we are given the bound and a stream that yields the set of
strings of the same length, column-by-column. In essence, at the kth step we
have the kth character of each input string. A justification of this model can be
found in Appendix.

2 Preliminaries

In this section we present the problems of Maximum Segmentation and some
terminologies we will need.

To begin we define some notations for strings and sets. Given a string w =
a1 . . . an, the length of w, denoted by |w|, is n, the ith element of w, denoted by
w[i], is ai and the substring denoted by w[i, j] is ai . . . aj . We use an analogous
notation for the arrays. Given two integers i and j with i ≤ j, we denote by [i, j]
the set of integers between i and j, i.e. {k ∈ Z : i ≤ k ≤ j}. Given a finite set S,
a partition P = {S1, . . . , Sk} is a set of subsets of S such that ∪Si∈PSi = S and
i 6= j ⇒ Si ∩ Sj = ∅. The cardinality of S is denoted by |S|.

The input of our problems is a set of recombinants R = {R1, . . . ,Rm} which
is a set of m strings of the same length n (|R1| = . . . = |Rm| = n). In what
follows, we use m as the number of strings of R and n as the length of each
string of R.

For an integer interval [i, j] with 1 ≤ i ≤ j ≤ n, we denote by R[i, j] the set
of all the substrings Rk[i, j] with k ∈ [1,m], i.e. R[i, j] = {Rk[i, j] : k ∈ [1,m]}.
Given a partition P of [1, n], we define the following three measures: λmin(R, P) =
min[i,j]∈P |[i, j]|, λave(R, P) = n

|P | and λmax(R, P) = max[i,j]∈P |R[i, j]|. When

there is no confusion, we just use the notations λmin, λave and λmax.

Example 1. The set R of 6 recombinants of size 10:

1 2 3 4 5 6 7 8 9 10

0 1 1 2 2 1 0 2 2 1

0 1 1 2 1 2 0 1 0 1

2 1 0 2 1 2 0 2 1 0

0 2 1 2 2 1 0 2 2 1

2 1 0 2 2 1 0 2 2 1

0 2 1 2 1 2 0 1 0 1

4 B. Cazaux, D. Kosolobov, V. Mäkinen, T. Norri

By taking the partition P1 = {[1, 3], [4, 7], [8, 10]},

1 2 3 4 5 6 7 8 9 10

0 1 1 2 2 1 0 2 2 1

0 1 1 2 1 2 0 1 0 1

2 1 0 2 1 2 0 2 1 0

0 2 1 2 2 1 0 2 2 1

2 1 0 2 2 1 0 2 2 1

0 2 1 2 1 2 0 1 0 1

one has λmin(R, P1) = min{|[1, 3]|, |[4, 7]|, |[8, 10]|} = min{3, 4, 3} = 3, λave(R, P1) =
10
3 and λmax(R, P1) = max{|R[1, 3]|, |R[4, 7]|, |R[8, 10]|} = max{3, 2, 3} = 3.

By taking the partition P2 = {[1, 2], [3, 6], [7, 8], [9, 10]},

1 2 3 4 5 6 7 8 9 10

0 1 1 2 2 1 0 2 2 1

0 1 1 2 1 2 0 1 0 1

2 1 0 2 1 2 0 2 1 0

0 2 1 2 2 1 0 2 2 1

2 1 0 2 2 1 0 2 2 1

0 2 1 2 1 2 0 1 0 1

one has λmin(R, P2) = min{|[1, 2]|, |[3, 6]|, |[7, 8]|, |[9, 10]|} = min{2, 4, 2, 2} = 2,
λave(R, P2) = 10

4 = 2.5 and λmax(R, P2) = max{|R[1, 2]|, |R[3, 6]|, |R[7, 8]|, |R[9, 10]|} =
max{3, 4, 2, 2} = 4.

Definition 1. The problem of λmin-Maximum Segmentation Partition (or λmin-
MSP) is, given a bound M and a set of recombinants R, to find a partition of
[1, n] which maximizes λmin(R, P) subject to λmax(R, P) ≤M . The problem of
λmin-Maximum Segmentation Length (or λmin-MSL) is, given a bound M and a
set of recombinants R, to find the measure λmin for an optimal partition P of
λmin-MSP.

We denote analogously by λave-Maximum Segmentation Partition (or λave-
MSP) and λave-Maximum Segmentation Length (or λave-MSL) the similar problems
in which λmin(R, P) is substituted with λave(R, P).

Hereafter we assume that M is at least max{|R[k, k]| : k ∈ [1, n]}, otherwise
all the Maximum Segmentation problems admit no solution.

Remark 1. The notation of λmin(R, P) and λave(R, P) corresponds to the “λmin”
and “λave” of [9]. The Maximum Segmentation Length problem corresponds
to the segmented version of Maximum fragment length of [9]. The Minimum
Segmentation problem of [7] corresponds to finding the measure λmax of a partition
P which minimizes λmax where λmin is bounded from below by an integer in
input.

Linear Time Maximum Segmentation Problems 5

In the two following sections we present different algorithms to find in linear
time (in the size of the input) an optimal solution of λave-MSP and λave-MSL (see
Section 3) and λmin-MSP and λmin-MSL (see Section 4).

3 λave-Maximum Segmentation problems

As λave = n
|P | , maximizing λave corresponds to minimizing |P |, i.e. the number of

intervals of P . The idea of our algorithm solving the λave-Maximum Segmentation
problems is to use a greedy algorithm from left to right depending on values
given by a special data structure, the positional Burrows–Wheeler Transform.
We begin by explaining which values we want to compute, what is the positional
Burrows–Wheeler Transform and how we can use it to build our values and
finally we give a proof of the correctness for our greedy algorithm.

3.1 Optimal solution of λave-MSP

Lemma 1. Let i, j, i′ and j′ be four integers such that i ≤ i′ ≤ j′ ≤ j. We have
|R[i′, j′]| ≤ |R[i, j]|.

Proof. The property is due to the fact that each string of R[i′, j′] is a substring
of R[i, j] on the same interval. ut

Hence, for a fixed j, the function |R[i, j]| is decreasing in i. For a bound
M and an integer k, we define ck as the value such that |R[ck, k]| > M and
|R[ck + 1, k]| ≤M ; in the case |R[1, k]| ≤M , we take ck = 0.

Remark 2. We can equivalently define ck as follows:

ck = min{j ∈ [1, k] : |R[j, k]| ≤M} − 1
= max{j ∈ [1, k] : |R[j, k]| > M}.

With all the values of ck for all k ∈ [1, n], we can build an optimal solution of
λave-MSP.

Lemma 2. The solution P = {[1, bp], . . . , [b3 + 1, b2], [b2 + 1, b1]} is an optimal
solution of the λave-Maximum Segmentation Partition problem where b1 = n,
bk+1 = cbk for k ≥ 1, and cbp = 0.

Proof. The set P = {[1, bp], . . . , [b3 + 1, b2], [b2 + 1, b1]} is a partition of [1, n]
because b1 = n and bk+1 = cbk . We are to prove that P is an optimal solution. Let
Popt = {[1, op′], . . . , [o2 + 1, o1] be an optimal partition with o1 = n. We denote
P1 = Popt and Pk = Pk−1 \ ([ok+1 + 1, ok]∪ [ok + 1, bk−1])

⋃
([ok+1 + 1, bk]∪ [bk +

1, bk−1]). We are going to prove by induction on k that each Pk is optimal (for
k ∈ [1, p′]). The base of induction k = 1 holds by definition (P1 = Popt). We
assume that Pk−1 is an optimal solution. As bk = cbk−1

, we have ok ≥ bk.
If bk ≥ ok+1+1, by Lemma 1, as ok+1+1 ≤ bk ≤ ok, we have |R[ok+1+1, bk]| ≤

|R[ok+1 + 1, ok]| ≤ M and thus Pk is a solution and |Pk| = |Pk−1|. Hence by
induction, Pk is an optimal solution.

6 B. Cazaux, D. Kosolobov, V. Mäkinen, T. Norri

If bk < ok+1 + 1, P ?
k = Pk−1 \ ([ok+2 + 1, ok+1] ∪ [ok+1 + 1, ok] ∪ [ok +

1, bk−1])
⋃

([ok+2 + 1, bk] ∪ [bk + 1, bk−1]) is a solution and |P ?
k | = |Pk−1| − 1 and

thus Pk−1 is not optimal which is impossible by induction.
As Pp′ is optimal and Pp′ = P , the partition P is an optimal solution. ut

3.2 pBWT and linear algorithm for λave-MSP

Given a string T [1,m] = t1 . . . tm, we denote by
←−
T the string corresponding to the

reverse of T , i.e.
←−
T = tm . . . t1. The positional Burrows–Wheeler Transform [3]

(or pBWT) of a set of recombinants R is two sets of n arrays of size m – an
array ak and an array dk for all k ∈ [1, n] – where for k ∈ [1, n], ak[1,m] is a

permutation of [1,m] such that
←−−−−−−−
Rak[1][1, k] ≤ . . . ≤

←−−−−−−−−
Rak[m][1, k] lexicographically

and dk[i] = 1 + max{j ∈ [1, k] : Rak[i][j] 6= Rak[i−1][j]}, for i ∈ [2,m] and
dk[1] = k + 1.

Durbin [3] showed that we can compute recursively ak and dk from ak−1 and
dk−1 in O(m) time for a binary alphabet and Mäkinen and Norri [6] further
generalized the construction for integer alphabets of size O(m).

Lemma 3 ([6]). The arrays ak and dk can be computed from ak−1 and dk−1 in
O(m) time, assuming the input alphabet is [0, |Σ| − 1] with |Σ| = O(m).

Norri et al. [7] use three different arrays sk, tk, ek to store the array dk in
increasing sorted order where sk contains all distinct elements from dk in the
increasing sorted order (so that the length of sk might be less than m), ek is the
normalized array dk where sk[ek[j]] = dk[j] for all j ∈ [1,m] and tk is an array
of the same length as sk such that, for any j, tk[j] indicates the number of times
the value sk[j] occurs in dk.

Lemma 4 ([7]). The arrays ak, sk, ek and tk can be computed from ak−1, sk−1,
ek−1 and tk−1 in O(m) time, assuming the input alphabet is [0, |Σ| − 1] with
|Σ| = O(m).

With sk, ek and tk we can redefine ck. As |R[sk[j]− 1, k]| =
∑

i∈[j,|tk|] tk[i],
one has

ck = max{j ∈ [1, |sk|] :
∑

i∈[j,|tk|]

tk[i] > M}. (1)

With this new definition of ck we obtain the following theorem.

Theorem 1. Given a bound M and a set of recombinants R, there is an al-
gorithm that computes an optimal solution of the λave-Maximum Segmentation
Partition problem in a streaming fashion in O(mn) time and O(m+ n) space.

Proof. By Lemma 4 and Equation 1, we can build ck in O(m) time for each value
k ∈ [1, n]. Lemma 2 gives us an optimal solution by using the values ck. Finally
we build and store all the values ck and make a backtracking from n to 0. ut

Linear Time Maximum Segmentation Problems 7

3.3 Right greedy and linear algorithm for λave-MSL

Lemma 2 gives us a greedy solution from right to left, a “Left greedy” version.
Here we present a “Right greedy” version working from left to right.

Lemma 5. The solution P = {[b1, b2 − 1], [b2, b3 − 1], . . . , [bp, n]} is an optimal
solution of the λave-MSP problem where b1 = 1 and bk+1 = min{j ∈ [bk, n] : cj ≥
bk}.

Proof. By Lemma 1, we know that for all k ∈ [1, n] and for all j ∈ [k, n], ck ≤ cj .
Hence, we can adapt the proof of Lemma 2 by extending the optimal solution of
the right to prove this result. ut

By using the solution of Lemma 5 instead of Lemma 2, we do not need to
store all the array of ck to build the solutions of λave-MSL and of λave-MSP and
we can extend the result of Theorem 1.

Theorem 2. Given a bound M and a set of recombinants R, there is an al-
gorithm that computes an optimal solution of the λave-Maximum Segmentation
Length problem in a streaming fashion in O(mn) time and O(m) space. One can
also find in O(mn) time and O(m + |P |) space the corresponding partition P ,
thus solving the λave-Maximum Segmentation Partition problem.

4 λmin-Maximum Segmentation problems

In this section, we give an O(mn) time algorithm building an optimal solution
of λmin-MSP and λmin-MSL. We focus on solving the problem λmin-MSL by using
dynamic programming algorithm; the corresponding partition (solution of λmin-
MSP) can be reconstructed by “backtracking” in a standard way (see [9]).

4.1 Dynamic programming algorithm

Given an integer M and a set of recombinants R, the λmin-Maximum Segmenta-
tion Length problem seeks to maximize the smallest cardinality of the intervals of
a partition P subject to λmax ≤M . In other words, this problem is to compute

max
P∈PM,R

min{j − i+ 1 : [i, j] ∈ P} (2)

where PM,R is the set of all partitions P of [1, n] such that for all [i, j] ∈ P ,
|R[i, j]| ≤M .

To solve λmin-MSL, we define the following recursion which solves (2):

N(k) =

∞ If k = 0,

max
ck≤j<k

min{N(j), k − j} Otherwise.
(3)

8 B. Cazaux, D. Kosolobov, V. Mäkinen, T. Norri

Algorithm 1 The algorithm Next(x, k).

1: z ← k −N(x);
2: w ← Argmax{N(u) : x ≤ u < z};
3: if x < z and N(w) > N(x) then
4: return Next(x+ 1, k);
5: else
6: return x;

Given k between 1 and n, we denote by Previous(k) the set of previous values
of k by (3), i.e. Previous(k) = Argmaxck≤j<k min{N(j), k − j}

= {j ∈ [ck, k − 1] : N(k) = min{N(j), k − j}}.
We can exhibit two recursive properties, one on ck and one on Previous(k)

(with Algorithm 1).

Lemma 6. Given k ∈ [1, n− 1], we have

1. ck ≤ ck+1,
2. For all j ∈ Previous(k), Next(max{j, ck+1}, k + 1) ∈ Previous(k + 1).

Proof. For 1, we straightforwardly obtain ck ≤ ck+1 due to Lemma 1.
For 2, we begin by proving that for all jk ∈ Previous(k), there exists jk+1 ∈

Previous(k + 1) with jk ≤ jk+1. Assume that it is not the case. Let be jk ∈
Previous(k) such that ∀jk+1 ∈ Previous(k+1), jk+1 < jk. In this case, we have
ck+1 < jk and for all j′ ∈ [ck+1, jk − 1], N(j′) ≤ N(k) = min{N(jk), k − jk}. If
N(jk) ≤ k−jk, we have that N(jk) < k−jk+1 and thus N(k+1) ≤ N(k). As jk ∈
[ck+1, k+ 1], jk is an element of Previous(k+ 1) which is impossible. Otherwise,
we have N(jk) > k− jk, N(jk) ≥ k− jk +1 and thus jk ∈ Previous(k+1) which
is also impossible.

Now, we know that we can search jk+1 in [max{jk, ck+1}, k + 1]. In Algo-
rithm 1, we decrease the size of the interval by the left until finding an ele-
ment of Previous(k + 1). Indeed for Next(x, k), if N(w) > N(x), there exists
u ∈ [x, k − N(x) − 1] such that N(u) > N(x) and thus min{N(x), k − x} <
min{N(u), k − u} and x /∈ Previous(k). Otherwise, we know that for all
u ∈ [x, k − N(x) − 1], min{N(x), k − x} ≥ N(u) ≥ min{N(u), k − u} and
for all u ∈ [k −N(x), k], min{N(x), k − x} ≥ k − u ≥ min{N(u), k − u}. Hence,
we have for x = Next(max{jk, ck+1}, k + 1), for all u ∈ [max{jk, ck+1}, k + 1],
min{N(x), k+ 1−x} ≥ min{N(u), k+ 1−u} and thus x ∈ Previous(k+ 1). ut

Theorem 3. Given a bound M and a set of recombinants R, there is an algo-
rithm that computes an optimal solution of the λmin-Maximum Segmentation
Length problem in a streaming fashion in O(nm) time and O(m + C) space
where C = max{k − ck + 1 : k ∈ [1, n]}. Using an additional array of length
n, one can also find in O(n) time the corresponding partition, thus solving the
λmin-Maximum Segmentation Partition problem.

Proof. By using a Range Maximum Queue (see Lemma 8) on the table of N(.)
initialized in size C, we can build one recursive step of Next (Algorithm 1) in

Linear Time Maximum Segmentation Problems 9

O(1). By using the pBWT, we can precompute to find C and build all the ck in
O(nm) time (see Lemma 4 and Equation 1).

By Lemma 6, we can call O(k) times the algorithm Next to build N(k).
Hence, we can solve the λmin-Maximum Segmentation Length in the optimal
O(nm) time. ut

4.2 Range Maximum Queue

Our algorithm for solving λmin-MSL (Theorem 3) requires a Range Maximum
Queue data structure. We begin by presenting a semi-dynamic RMQ data struc-
ture that can answer RMQ queries on the array Q in constant time and can
“extend” Q to the right (see Lemma 7).

Lemma 7. There exists a data structure that maintains an integer array Q[1, n]
and supports the append query, which adds a new element to the end of Q and
increments n, in O(1) amortized time and the Range Maximum Query, which,
for given i ∈ [1, n] and j ∈ [i, n], computes a position h ∈ [i, j] such that
Q[h] = max{Q[`] : i ≤ ` ≤ j}, in O(1) time.

Proof. Our solution is a straightforward modification of the classical static Range
Minimum Queury approach used in, for instance, [4] and [1].

Let n be the current length of Q. Denote b = d logn
4 e. We split Q[1, n] into

blocks of length b. As is standard, a Range Maximum Query on Q[i, j] is reduced
to two queries inside blocks and one “block-aligned” query: provided i and j
belong to different blocks (i.e., b(i− 1)/bc < b(j − 1)/bc), the new three query
ranges are Q[i, i′], Q[i′+1, i′′], Q[i′′+1, j] (each might be empty) such that i′ and
i′′ are multiples of b, i′ − i < b, and j − i′′ < b.

To process the query on Q[i′+1, i′′], we maintain, for each k ∈ [0, log n], an ar-
ray Pk[1, bnb c] storing positions of maximums in ranges of 2k blocks; more precisely,
for h ∈ [1, bnb c], we have (h− 2k)b < Pk[h] ≤ hb and Q[Pk[h]] = max{Q[`] : (h−
2k)b < ` ≤ hb}, assuming Q[`] = +∞ for ` ≤ 0. Then, putting k = blog((i′′ −
i′)/b)c, the maximum inQ[i′+1, i′′] obviously is max{Q[Pk[i′′/b]], Q[Pk[i′/b+2k]]}
and we return either Pk[i′′/b] or Pk[i′/b + 2k] accordingly. To calculate k in
O(1) time, we use either a special processor instruction or a precomputed ta-

ble L[1, 2d
log n

2 e] such that L[x] = blog xc for x ∈ [1, 2d
log n

2 e] (hence, blog xc =

L[x/2d
log n

2 e] + d logn
2 e for x ∈ [2d

log n
2 e+1, n]). Note that the length of L is O(

√
n).

For “in-block” queries, we maintain an array C[1, dnb e] succinctly encoding
Cartesian trees for all blocks (see below). The Cartesian tree3 for an array A[h, h′]
is a binary tree with vertices [h, h′] whose root is the smallest r ∈ [h, h′] such
that A[r] = max{A[`] : h ≤ ` ≤ h′}, and the left (resp., right) child of r (if
any) is the root of the Cartesian tree for A[h, r−1] (resp., A[r+1, h′]). For each
h ∈ [1, dnb e−1], we encode the Cartesian tree for the block Q[(h−1)b+1, hb] as
a sequence of 2b balanced parentheses and store it as a 2b-bit integer in C[h]
(zero/one bits correspond to opening/closing parentheses); C[dnb e] stores the

3 The original of cartesian tree is for Range Minimum Query.

10 B. Cazaux, D. Kosolobov, V. Mäkinen, T. Norri

Cartesian tree for Q[(dnb e−1)b+1, n]. It is well known that if a is the lowest
common ancestor of two vertices p and q (p ≤ q) in the Cartesian tree for A[h, h′],
then A[a] = max{A[`] : p ≤ ` ≤ q}. We precalculate a table T [0, 22b−1][1, b][1, b]
such that, given numbers p, q ∈ [1, b] and a 2b-bit integer x encoding the Cartesian
tree for an integer array A[1, b], T [x][p][q] stores the lowest common ancestor of
p and q in the tree (if x does not encode any such tree, the value of T [x][p][q] is
undefined). Now, using the table T and the array C, one can straightforwardly
answer in-block queries in O(1) time. Note that the size of T is O(22bb2) =

O(
√
n logO(1) n).

It remains to describe how the defined structures are modified. Suppose
that a new value is appended to the end of Q and n is incremented. If the
new n is a multiple of b, a new element Pk[bnb c] is added to each array Pk:
P0[bnb c] is computed naively in O(b) time and, for k > 0, Pk[bnb c] is set to either
` = Pk−1[bnb c] or `′ = Pk−1[bnb c−2k−1], depending on whether Q[`] < Q[`′]. Thus,
we spend Θ(b+ log n) = Θ(b) time to update all Pk, which is amortized among
the previous b− 1 appends to Q in which n was not a multiple of b.

To maintain C, we utilize a well-known fact that the Cartesian tree for any
array A[h, h′] can be constructed in O(h′ − h) time online, i.e., we read A[h, h′]
from left to right and, after processing each prefix A[h, h′′], have the Cartesian tree
for A[h, h′′] (e.g., see [4]). The Cartesian tree for the last block Q[(dnb e−1)b+1, n]
of Q is maintained using this online algorithm and, thus, when n is incremented,
we have a new tree and have to update C[dnb e]. To this end, we construct b− 1
tables Tj [0, 2

2j−1][1, 2j], for j ∈ [1, b−1], such that, given h ∈ [1, 2j] and a 2j-bit
number x that encodes a tree F with j vertices [1, j] in a balanced parentheses
form, Tj [x][h] contains a 2(j+1)-bit integer encoding a tree obtained from F by
attaching the new vertex j + 1 as a leaf to h if h ≤ j, or by making j + 1 the
new parent of h− j (so that the old parent of h− j, if any, is the parent of j + 1)
if h > j; Tj [x][h] is undefined if x does not encode any tree. Using the tables Tj
and the online algorithm, one can maintain C in O(n) total time. Note that the

size of all Tj is O(22bb2) = O(
√
n logO(1) n).

Finally, if the new value of dlog ne differs from the old one, we rebuild all
structures in a straightforward way: the tables T , Tj , and L are precomputed in

O(
√
n logO(1) n) = o(n) time, P0 is constructed from Q in one pass, each array

Pk with k ∈ [1, log n] is computed using Pk−1 in Θ(n
b) = Θ(n

logn) time, and the

Cartesian trees for all blocks are built in O(n) total time and encoded in the
array C. Overall, the rebuilding takes O(n) time. Since this process is initiated
only when n is a power of two, the total time is O(n) in the end. ut

In our algorithm, all the RMQ queries of the semi-dynamic RMQ data
structure are made on a window from left to right. We can see this data structure
as a queue, i.e. a data structure where we can make insertion at the end and
deletion at the beginning in constant time. A Range Maximum Queue (or RMQe)
is the data structure Q that supports queue operations and range maximum
query, which, for given i ∈ [1, n] and j ∈ [i, n], computes a position h ∈ [i, j]
such that Q[h] = max{Q[`] : i ≤ ` ≤ j}, in O(1) time. If we know the maximum
number of elements of the RMQe data structure, we can improve the space

Linear Time Maximum Segmentation Problems 11

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

1 3 2 4 3 2 4 2 3 2 3 4 3 4 3 4 3 3 5 4 4 4 5 2 4 3 1 3 2 5

i i′ i′′ j

46 48

47 50

49

C 0000110011100111

72

71

74

73

75

000100011001111011, ,

P0 52 , 57 , 64 , 68

P1 49 , 57 , 64 , 68

P2 32 , 49 , 49 , 64

Fig. 1. Example of the construction of the semi-dynamic Range Maximum Query of
Lemma 7. For the interval [48, 73] with b = 5, we split this interval in three intervals:
[48, 50], [51, 70] and [71, 73]. We build the positions of the maximum for these three
intervals which are T [0001001111][2][5] = 49, P2[15] = 64 and T [0010010111][1][3] = 71
and we take this one with the maximum value in the array which is 64.

complexity of our algorithm by removing the first elements of the array that will
no longer query.

Lemma 8. Let N be an integer. There exists a queue data structure that main-
tains an integer array Q[1, n] with n ≤ N and supports the Range Maximum
query, which adds a new element to the end of Q and increments n, in O(1) amor-
tized time, remove elements to the beginning of Q in O(1) amortized time and
the Range Maximum Query, which, for given i ∈ [1, n] and j ∈ [i, n], computes a
position h ∈ [i, j] such that Q[h] = max{Q[`] : i ≤ ` ≤ j}, in O(1) time.

Proof. We use the data structure that we explain in Lemma 7 but we initialize all
the arrays in function of N instead of n. Hence we initialize b = d logN

4 e, logN + 1

arrays Pk[1, dNb e] (with k ∈ [0, logN]), L[1, 2d
log N

2 e] and C[1, dNb e]. We add also
an integers begin initialized to 1 to store the beginning of the arrays Pk and the
array C and another integer start initiated to 0 to store the shift in the first
block (during all our algorithm start ∈ [0, b− 1]). We define by +A the modular
addition (plus one) in [1, A], i.e. for all x and y in [1, A], x+A y is equal to x+ y
if x+ y ≤ A and x+ y −A otherwise (x+A y ∈ [1, A]).

To remember, in Lemma 7, a Range Maximum Query on Q[i, j] is reduced to
two queries inside blocks Q[i, i′] and Q[i′′+1, j] and one “block-aligned” query
Q[i′+1, i′′] with i′ and i′′ are multiples of b, i′ − i < b, and j − i′′ < b. As
we shift of start elements on the right, we take i′ and i′′ two multiples of
b such that i + start ≤ i′ ≤ i′′ ≤ j + start, i′ − (i + start) < b, and (j +
start) − i′′ < b. To build Q[i′+1, i′′] we put k = blog((i′′ − i′)/b)c and return
Pk[i′′/b+dNb e

begin] or Pk[i′/b+2k +dNb e
begin]. To build the queries inside blocks

12 B. Cazaux, D. Kosolobov, V. Mäkinen, T. Norri

Q[i, i′] and Q[i′′+1, j] we need to compute T [C[i′/b+dNb e
begin]][i+ start][i′] and

T [C[i′′/b+dNb e
begin]][i′′][j + start].

To remove an element at the beginning of our RMQe we only need to increase
start by 1: start becomes start+ 1 if start < b− 1 and otherwise start becomes
0 and we update begin to begin+dNb e

1.

To add an element at the end, we use the same online algorithm of Lemma 7
(see [4]) to maintain the Pk arrays and C by updating the elements of index end
except the fact that if n is a multiple of b, we do not create a new element, we
just update end to end+dNb e

1.
ut

The lemma can be further strenghtened by removing the requirement of
knowing the bound N : In that case, one needs to consider the case when log n
changes. Unlike in Lemma 7, series of alternating insertions and deletions can
now cause dlog ne to change at each operation, so the amortization argument
cannot be used directly. However, this case can be handled by maintaining all
structures for two consective dlog ne values: Consider x = dlog ne to change into
x+1 due to insertion. We build all structures for x+1 as in the proof of Lemma 7,
but also keep the structures for x. All insertions and deletions are applied on
both structures until dlog ne becomes x− 1 or x+ 2. We then build structures for
x− 1 and keep structures for x− 1 and x, or build structures for x+ 2 and keep
structures for x+ 1 and x+ 2. Now the O(n) rebuilding cost can be amortized
to the O(n) work done before it takes place.

5 Conclusion

In this article, we described linear algorithms for Maximum Segmentation prob-
lems (see Table 1). In our Column Stream Model, we assume that we see our
data column by column and thus the time complexity is Ω(mn) and the space
complexity is Ω(m+ X) where X is the size of the output (X is equal to 1 for
λave-MSL and λmin-MSL and the cardinality of the optimal partition for λave-MSP
and λmin-MSP). All of these algorithms can be applied in the random access data
model (without data streams): they give exactly the same time complexities.

Problems Time complexity Space complexity Source

λave-MSP O(mn) O(m+ |P |) where P is an optimal partition Theorem 1
λave-MSL O(mn) O(m) Theorem 2
λmin-MSP O(mn) O(m+ n) Theorem 3
λmin-MSL O(mn) O(m+ max{k − ck : k ∈ [1, n]}) Theorem 3
Table 1. Summary of Maximum Segmentation problems in the column stream model.

As future work, we plan to implement the algorithms and offer them as new
features of our founder reconstruction toolbox.4

4 https://github.com/tsnorri/founder-sequences

https://github.com/tsnorri/founder-sequences

Linear Time Maximum Segmentation Problems 13

References

1. Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In
LATIN 2000: Theoretical Informatics, 4th Latin American Symposium, Punta del
Este, Uruguay, April 10-14, 2000, Proceedings, pages 88–94, 2000. URL: https:
//doi.org/10.1007/10719839 9, doi:10.1007/10719839_9.

2. Guillaume Blin, Romeo Rizzi, Florian Sikora, and Stéphane Vialette. Minimum
mosaic inference of a set of recombinants. Int. J. Found. Comput. Sci., 24(1):51–66,
2013.

3. Richard Durbin. Efficient haplotype matching and storage using the positional
Burrows-Wheeler transform (PBWT). Bioinformatics, 30(9):1266–1272, 2014.

4. Johannes Fischer and Volker Heun. Theoretical and practical improvements on the
RMQ-problem, with applications to LCA and LCE. In CPM 2006, volume 4009 of
LNCS, pages 36–48. Springer, 2006.

5. Hania Gajewska and Robert E. Tarjan. Deques with heap order. Information
Processing Letters, 22(4):197–200, 1986.

6. Veli Mäkinen and Tuukka Norri. Applying the positional Burrows–Wheeler trans-
form to all-pairs hamming distance. Submitted manuscript, 2018.

7. Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen. Minimum
segmentation for pan-genomic founder reconstruction in linear time. In 18th
International Workshop on Algorithms in Bioinformatics, WABI 2018, August
20-22, 2018, Helsinki, Finland, pages 15:1–15:15, 2018. doi:10.4230/LIPIcs.WABI.
2018.15.

8. Pasi Rastas and Esko Ukkonen. Haplotype inference via hierarchical genotype
parsing. In Algorithms in Bioinformatics, 7th International Workshop, WABI 2007,
Philadelphia, PA, USA, September 8-9, 2007, Proceedings, pages 85–97, 2007.

9. Esko Ukkonen. Finding founder sequences from a set of recombinants. In Algo-
rithms in Bioinformatics, Second International Workshop, WABI 2002, Rome, Italy,
September 17-21, 2002, Proceedings, pages 277–286, 2002.

10. Daniel Valenzuela, Tuukka Norri, Välimäki Niko, Esa Pitkänen, and Veli Mäkinen.
Towards pan-genome read alignment to improve variation calling. BMC Genomics,
19(Suppl 2):87, 2018.

https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.15
http://dx.doi.org/10.4230/LIPIcs.WABI.2018.15

14 B. Cazaux, D. Kosolobov, V. Mäkinen, T. Norri

Appendix

About the Column Stream Model

Given an algorithm for a problem with an input I and an output O, the space
complexity of this algorithm corresponds to the space used by I and by O and the
auxiliary space which is the temporary space used by this algorithm. Therefore
the space complexity is in Ω(|I| + |O|). In the case of problems of Maximum
Segmentation, all algorithms have a space complexity of Ω(nm) where the input
is a set of m strings of size n. As we want to avoid an auxiliary space of Θ(nm)
(this could be too big for a computer), we cannot use the random access model.
Indeed the random access model corresponds to open all the file in input in the
temporary memory. We suggest a specific streaming data model where the set of
strings of the same length is seen column by column: the Column Stream Model.
In this model, the size of the input is in Θ(m) which is acceptable.

To prove the realism of this model, we implemented a streaming way to read
a file and we tested this implementation with files of different sizes (see Figure 2).
The experiments were run on a machine with an Intel Xeon E5-2680 v4 2.4GHz
CPU, which has a 35 MB Intel SmartCache. The machine has 256 gigabytes of
memory at a speed of 2400MT/s. The code was compiled with g++ using the
-Ofast optimization flag.

Fig. 2. Time and space complexity to read a set of recombinants depending of the
buffer size (256, 1024 and 4096).

	Linear Time Maximum Segmentation Problems in Column Stream Model

