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Abstract

Interface energy and kinetic coefficient of crystal growth strongly depend on the face of the crystalline lattice. To
investigate the kinetic anisotropy and velocity of different crystallographic faces we use the hyperbolic (modified) phase
field crystal model which takes into account relaxation of atomic density (as a slow thermodynamic variable) and atomic
flux (as a fast thermodynamic variable). Such model covers slow and rapid regimes of interfaces propagation at small and
large driving forces during solidification. In example of BCC crystal lattice invading the homogeneous liquid, dynamical
regimes of crystalline front propagating along the selected crystallographic directions are studied. The obtained velocity
and the velocity sequences for different faces are compared with known results.
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1. Introduction

The phase-field crystal model (PFC) was formulated
[1, 2] to describe continuous transitions from the homoge-
neous to the periodic state (similarly to the LandauBra-
zovskii transition [3–5]) and between different periodic states
evolving over diffusion times. The model is based on the
description of the free energy, which is a functional of the
atomic density field periodic in the solid phase and homo-
geneous in the liquid disordered state. The form of the free
energy close to the Swift-Hohenberg type [6] and allows to
account structural phase transitions of the first and second
order.

Recent advances in PFC-modeling of the different as-
pects of crystallization allow one to model many scenarios
such as dynamics of freezing of colloids and polymers, epi-
taxial growth, ordering of the structures on nano-scales [7]
and rapid crystallization [8]. Results of PFC simulations
could provide interface energies, pattern selection under
non-equilibrium conditions and velocities of moving phase
boundaries [9]. As a simplification of density functional
technique (DFT) for freezing [10], a PFC model utilizes
several approximations [2, 11] which makes it relevant for
modelling of nucleation from undercooled liquids [12], den-
dritic crystal growth [13, 14], heteroepitaxy and multi-
grain growth in presence of hydrodynamical flows [15].

In the present work, we numerically investigate rapid
growth of different faces in body centered cubic crystal lat-
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tice (BCC-lattice). With this aim we use the hyperbolic
(modified) PFC-model which takes into account relaxation
of the phase field and relaxation of the flux of atomic den-
sity [8, 16]. In particular, an influence of the local re-
laxation time and the effect of atomic reticular density of
different crystal faces on the interface velocity are studied.

2. PFC model

The hyperbolic (modified) PFC-model (MPFC) for fast
transitions includes the inertial term for the atomic density
[8, 16] as the result of accounting for the flux ~J(~r, t) and
atomic density field n(r, t) = ρ(r, t)/ρ0 − 1 in a form of
independent thermodynamic variables, where ρ(r, t) is a
density field and ρ0 is a reference density. Therefore, in
MPFC, the free energy is a functional of n and ~J(~r, t)
formulated as [8, 16, 17]:

F (n, ~J) =

∫ [n
2

(−ε+Di)n−
a

3
n3 +

v

4
n4

]
d~r+

+
τ

2

∫
( ~J · ~J )d~r, (1)

where a and v are phenomenological constants which con-
trol phase transition, τ is the relaxation time of the atomic
density flux ~J(~r, t), ε is the driving force (quench depth)
and the differential operator Di per se elastic module [1,
18–20] describes crystallographic symmetries in one-mode
(i = 1) and two-mode (i = 2) approximations:

Di =

{
r0 + (q20 +∇2)2, i = 1,

[r0 + (q20 +∇2)2][r1 + (q21 +∇2)2], i = 2.
(2)
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The coefficients r0 and r1 are responsible for the relative
stability of crystalline structures, and q0 and q1 are the
modules of first two sublattice wave vectors [14, 19, 21].
In current work we utilize one-mode case i = 1 with r0 = 0,
q0 = 1 which corresponds to the stable BCC structure [21]
in one-mode case.

The dynamical MPFC-equation for atomic density field
is [8, 16, 17, 22, 23]:

τ
∂2n

∂t2
+
∂n

∂t
= ∇2µ, µ =

δF

δn
, (3)

where µ(n) is a chemical potential defined by the func-
tional derivative of the free energy Eq. (1),

µ = (1− ε)n− an2 + vn3 + 2∇2n+∇4n. (4)

If the relaxation of the flux proceed infinitely fast, τ → 0,
Eq. (3) transforms to the original parabolic PFC-equation
[2, 7, 9, 11, 24–26]. The inertia term τ∂2n/∂t2 makes the
hyperbolic dynamics possible to capture the fast propaga-
tion front over the times τ for flux relaxation [8, 16, 17]
that is important to predict non-equilibrium effects, for
instance, in rapid solidification [27]. Alternatively, Eq. (3)
was proposed in Ref. [22] to incorporate both mass diffu-
sion and fast elastic relaxation. Proposed hyperbolic term
(see Eq. 3) could be obtained with the past history ap-
proach, using the memory kernel to account the history
of the force ∇µ [8, 16, 28]. The equilibrium properties of
solid-liquid interfaces such as interfacial energies and its
anisotropy were studied previously [29, 30] for the case of
small ε’s.

Using Eqs. (3)-(4), we simulate the growth of different
faces in BCC-lattice at high1 driving forces ε > 0 with
non-zero values of the relaxation time τ at a = 0. More
specifically, we analyze the crystallization fronts moving
from metastable liquid for seeds with different initial ori-
entations of the BCC-lattice.

2.1. Numerical solution of MPFC equation

Introducing the new variable P one can split Eqs. (3)-
(4) effectively reducing the spatial derivative order [17]:

τ
∂2n

∂t2
+
∂n

∂t
= ∇2µ,

µ = (1− ε)n− an2 + vn3 +∇2(2n+ P )
P = ∇2n

(5)

The numerical simulation of crystallization in computa-
tional domain of slab configuration was initiated by intro-
ducing the periodic crystalline nucleus oriented along the
elongated side of the domain (which was merging with the

1Under high driving forces we assume the range at which equi-
librium values of lattice parameter does not allow one to predict the
interface velocity consistently with experimental data or numerical
modelling. See Fig. 4 in [31], where this regime was achieved for
dimensionless driving force ε > 0.2.

direction of growth, see Fig. 4). The amplitude of den-
sity field n for initial seed was set as a constant η = 0.5.
The seed’s equilibrium lattice parameter 2π/q was found
from the free energy minimization [19, 20]. The equilib-
rium modulus of wave vector was set q =

√
2/2. The

initial average density n0 was found for each initial driv-
ing force ε along the melting line on structure diagram.
Regions of phase existence were found also using the free
energy minimization [19, 20]. The computational domain
consists of 27×27×300 dimensionless units with up to 230
grid points alongside; the maximum tetrahedral mesh ele-
ment size was set ` = 1.4. Additional tests was performed
with domain size 45 × 45 × 400, ` = 1.5. The lateral size
of the domain matched the equilibrium lattice parameter
to reduce the possible strain effects. We compared the ob-
tained front positions on this different size domains and
found no influence of box size on the results. Such domain
size was enough to reach the constant interface velocity
with the formation of periodic crystalline lattice. The pe-
riodic boundary conditions were defined at the elongated
sides, with the isolation on the other surfaces of the slab.
We got no huge difference in the value of front velocity for
periodic and non-periodic boundary conditions except the
stability and periodicity of formed crystal. The position of
the solid-liquid interface in time was obtained by the deter-
mination of position of the minimum of density field time
derivative ∂n/∂t which corresponds to the highest gradi-
ents of the chemical potential µ. This approach allow one
to naturally locate the interfaces in PFC-models and to
evaluate the position of physically justified boundaries.

For the second time derivative, we utilize a solver with
the backward differentiation formula having accuracy up
to 5th order of magnitude. The system of equations (5) has
been solved numerically in three-dimensions using a direct
scheme of the finite element method with the Lagrange-
C2 elements utilizing the COMSOL Software [32] on two-
processor Xeon-based computer.

3. Results and discussion

3.1. Front velocities

We studied the free growth of 〈100〉, 〈110〉 and 〈111〉
faces of BCC-lattice as the planar front observed in all our
simulations. The average dimensionless velocity V of the
faces was obtained from the front positions in time. Its
value was defined as V = Vf/V0 with the front velocity
Vf = (Zr − Zr

0)/(t′ − t′0) [m/s]. The velocity scale V0 was
obtained from the scales of front position Zr [m] and time
t′ [s] as [14, 30]:

V0 = λk5mMρ, λ =
kBTΓ

ρ∗0k
4
m

, (6)

where T is the temperature, kB is the Boltzmann constant,
km is the position of the first maximum of correlation func-
tional C(k) in the reciprocal space, ρ∗0 is the one-particle
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Figure 1: BCC solid-liquid interface position vs dimensionless time
for different orientation of initial seeds, ε = 0.4, n0 = −0.38, τ = 0.

number density of the reference liquid state, Mρ is the mo-
bility, Γ is the model coefficient determined by the second
derivative of correlation function and the position of its
first peak. (see [14, 30, 33] for details). As the result, the
slope of the curve ”front position – time” defines the value
of the dimensionless velocity V .

Figure 1 clearly shows that the slope of all of three faces
after a short period of irregular motion in the beginning
becomes constant V = const. The averaged interface posi-
tions indicated on Fig. 1 was found by the Bézier smooth-
ing procedure. The non-monotonic point’s positions in-
dicate faceted morphology of stepwise growth previously
observed by [9]. The strongest faceting found for 〈110〉,
and less one for 〈100〉. To quantify V we fit the set of
the front positions Zi at ti to the function Z = z0 + V t,
where z0 is the initial position. Selecting the moderate
front positions 100 < Zi < 250 and correspondent times
ti the data free of the boundary effects have been used.
The uncertainty in the front velocity ∆V ' ∆Z/t. Due
to the constant maximum error in front position determi-
nation ∆Z = 8.9 equal to the lattice parameter in 〈100〉
direction for fixed domain size we get the systematic error
∆V = 4.2%. For the front positions presented on Fig. 1
we obtained the following values of averaged velocities:
V〈100〉 = 0.519, V〈111〉 = 0.4623, V〈110〉 = 0.4027 with the
appeared anisotropies V〈100〉/V〈110〉 ≈ 1.29 which are qual-
itatively agree with the results of work [14].

Gránásy et al. [9, 13] showed the decreasing velocity in
time V ∼ t−1/2, confirming the diffusion-controlled regime
of solidification with the existence of different sequence of
growth velocities obtained as V〈111〉 > V〈100〉 > V〈110〉. In
their work the position of front is proportional to square
root of time in the beginning of crystallization front move-
ment, which is well observed in the case of small driving
forces used in [9, 13]. There is an analysis of front dynam-
ics (see work [34] for a pure element system solidification
and the work [35] for a binary alloy system) which shows
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Figure 2: BCC front velocities V as a function of
driving force ε for different crystallographic faces. Repre-
sented lines and points correspond to initial densities n0 =
−0.108,−0.13,−0.19,−0.26,−0.31,−0.36 for driving forces ε =
0.05, 0.1, 0.2, 0.3, 0.4, 0.5 respectively. Solid triangles correspond to
the propagation of 〈110〉-front for τ = 0.1 and τ = 0.5. The addi-
tional group of triangles 5 from top to bottom corresponds to the
different values of relaxation time τ = 0.05, 0.1, 0.2, 0.3, 0.5 for the
driving force ε = 0.5 and averaged density n0 = −0.38. The maxi-
mum systematic error is ∆V = 4.2%.

that at a small driving force, the growth velocity will decay
in time and the position of the front will be a function of
square root of time. However, for the larger driving forces
the front velocity should attained the constant value be-
hind some critical driving force ε. A search for this critical
value in the PFC is a perspective topic of future study.
The accounting of the cubic term (a 6= 0 in [9, 13]) in free
energy Eq. (1) could also lead to the retention of the front
movement to the nonlinear behaviour which may also in-
fluence on the comparative faces velocities. In our simula-
tions, the linear dependence of front positions in time has
been found with the velocity sequence different from the
work of Gránásy et al. [9, 13]: we have obtained for BCC
crystals that the most fast growth occurs for the faces with
the lowest reticular atomic density in consistency with the
crystallographic law of Bravais (see Section 3.2).

The non-linear dependence of V (ε) presented in Fig. 2
demonstrates effect of relaxation time on the velocity of
different crystallographic faces in BCC-lattice. During the
solidification of undercooled liquid we observed the sponta-
neous recrystallization and growth of the rods-phase simul-
taneously with the BCC-crystal for the large initial densi-
ties n0 > −0.19 particularly for the 〈111〉 and 〈110〉 faces.
One can observe that stable BCC-structure can growth
in the nonequilibrium conditions until the velocity of the
more dense rods structure suppress it. The nonequilib-
rium crystallization becomes possible due to the expan-
sion of the region of existence of BCC-structure in pres-
ence of moving boundaries and respective kinetic-liquidus

3
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Figure 3: BCC front velocities V as a function of relaxation time
τ for different crystallographic faces. Represented lines and points
correspond to initial density n0 = −0.36 and driving force ε = 0.4.
The growth velocity anisotropy V〈100〉/V〈110〉 is shown by the bold
line; values presented on the right y-axis.

offset. We encountered a number of difficulties in the front
determination for the low driving forces, so the densities
correspondent to the solidus line was evaluated to achieve
the stable BCC-crystal. The sequence of growth speeds
of BCC-crystal preserves for most initial parameters. The
form of the curves is the same as it follows from the gen-
eral tanh-solution of PFC-amplitude equations [31, 36].
With the increase of driving force the velocity tends to its
asymptotic limit given by V → Vφ with Vφ ∼ 1/

√
τ . From

Fig. 2 follows that the main difference in the predictions of
the parabolic PFC-model (τ = 0) and the hyperbolic PFC-
model (τ > 0) consists in the decreasing of the front ve-
locity with the increasing τ . This occurs due to additional
degree of freedom, i.e. the atomic flux as independent vari-
able in the hyperbolic model, which need to additionally
relax in comparison with the parabolic (τ = 0) model.

The dependence of front velocity on the value of re-
laxation time presented in Fig. 3 shows the nonlinear de-
creasing of V (τ). This figure also exhibits a small effect of
anisotropies on τ for a fixed ε. Apparently, the contribu-
tion of flux term in Eq. (3) is isotropic and influences on
each crystal face identically.

Obtained growth anisotropies and thus difference in
velocities for low initial density n0 shown in Fig. 1 begin
to decrease as the initial density n0 rises. Increasing of
n0 makes anisotropy smaller [≈ 1, see point ε = 0.4, for
n0 = −0.31 of Fig. 2, where V〈100〉 = 1.4204, V〈111〉 = 1.42,
V〈110〉 = 1.41] due to effective increasing of the gradient of
chemical potential. The anisotropy of growth velocities
changed from 1 up to 1.06 for intermediate ε.

3.2. Reticular density

The growth morphology and movement of crystal lat-
tice faces are determined by the lattice type. According to
the Bravais empirical law the order of preferable growth
directions for faces depends on the reticular density [37]:
the faster growth exists for the faces with the lower reticu-
lar densits of the specific face. The reticular density ρ〈hkl〉

Figure 4: Snapshots of propagating fronts (for different τ) showing
the relaxation of defect-structures selected on rapid front along the
〈110〉 at t = 100 at high driving forces ε = 0.5, n0 = −0.38.

is defined as the number of atoms (or its fraction) per unit
area on a plane [38].

Let us summarize the results for reticular density of
two dimensional triangle structure and three dimensional
face centered cubic (FCC) and BCC lattices using the ge-
ometrical approach. For the equilibrium lattice parameter
a the correspondent densities would be (from lowest to
highest value of the density)

1) Triangle: ρ〈10〉 =
1

3
√

3a
; ρ〈11〉 =

1

2a
;

2) for FCC: ρ〈110〉 =

√
2

a2
; ρ〈100〉 =

2

a2
; ρ〈111〉 =

4√
3a2

;

3) for BCC: ρ〈100〉 =
1

a2
; ρ〈111〉 =

19
√

3

27a2
; ρ〈110〉 =

√
2

a2
.

Therefore, according to the Bravais law, the BCC struc-
ture should exhibit the following sequence for the growth
velocity V〈100〉 > V〈111〉 > V〈110〉 that agrees well with the
calculations of the present work (see results of Fig. 1 and
Fig. 2).

3.3. Formation of disordered crystals

Originating of disordered crystal structures is a special
task of experimental and theoretical works (see Ref. [39]
and references therein). In the present study, large values
of ε and τ could lead to the formation of a disordered struc-
ture due to capturing of atomic disorder from the liquid,
see Fig. 4. With this process the specific face decelerates
and becomes wider. This defect structure was also pre-
viously observed, in two-dimensional case of solidification
from an supercooled liquid [40, 41]. This effect is explained
as a consequence of the mismatch between the selected
lattice parameter and the equilibrium lattice spacing. The
mismatch increases with increasing of driving force and
in case of present hyperbolic PFC-equation, with the in-
creasing of the relaxation time τ . The marginal stability
analysis could explain these defects (dislocations), emerg-
ing presumably due to the stress arising from the non-
equilibrium lattice constant selected at the rapidly growth
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crystal face [31, 42]. Computation and quantitative esti-
mations of disordered zone around solidification front are
of special interest of analysis [43]. A search for quanti-
tative estimations of this disorder in the PFC-model is a
perspective topic of future study.

4. Conclusions

The hyperbolic (modified) PFC-model which takes into
account relaxation of the phase field and relaxation of the
flux of atomic density has been used in numerical study
of rapidly growing 〈100〉, 〈110〉 and 〈111〉 faces in body
centered cubic crystal lattice (BCC lattice). In particular,
an influence of the local relaxation time and the effect of
atomic reticular density of different crystal faces on the
interface velocity has been studied.

The PFC-modeling shows that the BCC lattice exhibits
the following sequence for the growth velocity V〈100〉 >
V〈111〉 > V〈110〉 that agrees well with the experimental Bra-
vais law accordingly which the faster growth exists for the
faces with the lower reticular densities of the specific face.
Formation of the disordered structure due to the lack of
time for the local relaxation of structure has been obtained
in modeling of different faces at the growth under high
driving forces and relaxation times.
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