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Abstract: In the present work, we investigate the efficiency of a numerical scheme to solve a nonlinear
time-fractional heat equation with sufficiently smooth solutions, which was previously reported in
the literature [Fract. Calc. Appl. Anal. 16: 892–910 (2013)]. In that article, the authors established the
stability and consistency of the discrete model using arguments from Fourier analysis. As opposed to
that work, in the present work, we use the method of energy inequalities to show that the scheme is
stable and converges to the exact solution with orderO(τ2−α + h4), in the case that 0 < α < 1 satisfies
3α ≥ 3

2 , which means that 0.369 / α ≤ 1. The novelty of the present work lies in the derivation of
suitable energy estimates, and a discrete fractional Grönwall inequality, which is consistent with the
discrete approximation of the Caputo fractional derivative of order 0 < α < 1 used for that scheme
at tk+1/2.

Keywords: nonlinear fractional heat equation; discrete energy estimates; discrete fractional Grönwall
inequality; convergence and stability analyses

MSC: 65M06; 35K15; 35K55; 35K57

1. Introduction

In recent years, various works that discuss fractional heat flux models that lead to fractional
heat equations have been published. For example, Compte and Metzler [1] proposed time-fractional
generalized Cattaneo equations. In their models, various physical contexts were taken into account,
including continuous-time random walks, non-local transport theory and delayed flux–force relations.
On the other hand, a theory of thermal stresses was formulated by Povstenko [2] following [1].
Metzler and Klafterin [3] also presented a general physical introduction to fractional diffusion
equations. Later on, that work motivated the use of the fractional Cattaneo model to simulate laser
short-pulse heating of a solid surface [4], as well as the modeling of salt transfer processes in fractal
structured media on the base of fractional derivative equations with Caputo derivatives [5].

Motivated by vast applications of fractional heat flux models, this work is devoted to the numerical
solution of the fractional differential equation
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∂αu(x, t)
∂tα

= K
∂2u(x, t)

∂x2 + f (x, t, u(x, t)), 0 < x < L, 0 < t < T, (1a)

with initial and boundary conditions

u(x, 0) = ψ(x), 0 ≤ x ≤ L, (1b)

u(0, t) = φ0(t), u(L, t) = φL(t), 0 ≤ t ≤ T. (1c)

Here, K, L and T are positive constants, and f (x, t, u(x, t)) is a sufficiently smooth function that
will satisfy the requirements for consistency and convergence. In the present work, the fractional
derivative of order 0 < α < 1 is defined in the Caputo sense, that is,

∂αu(x, t)
∂tα

=
1

Γ(1− α)

∫ t

0
(t− ζ)−α ∂u(x, ζ)

∂ζ
dζ. (2)

Problems of the form (1) have been investigated in the literature from the analytical point of
view. As examples, the authors of [6] studied a multidimensional initial-boundary-value problem
for a fractional diffusion equation with a Caputo time-fractional derivative where the coefficients
depend on the spatial and temporal variables. Homogeneous Dirichlet boundary conditions were
considered therein, and the authors proved the regularity and the unique existence of weak solutions.
Meanwhile, a distributed-order form of the problem studied in the previous work was tackled in [7].
The existence, uniqueness and regularity of solutions were proved in that article using a classical
variational approach. However, it is worth pointing out that those papers assume that the function
f above depends only on the spatial and temporal variables. An interesting analytical question is
whether the results of those papers can be extended to consider source functions that depend on the
solution, as in the present case. In the scheme analyzed in the present work, the one-dimensional
setting is used conveniently to include the dependency of the source on the solution.

The nonlinear time-fractional heat equation represents is a nonlinear integro-differential equation,
which can hardly be solved analytically, whence the development of reliable numerical methods to
solve it is justified. On those grounds, a widespread approximation for fractional derivatives (2)
with order O(τ2−α) is the so-called L1 method [8,9]. In turn, the L1-2 formula [10] is a new
difference analog of the Caputo fractional derivative with the order of approximation O(τ3−α).
Both methods have been widely used for solving fractional partial differential equations with
temporal Caputo derivatives [11–14]. Later on, the L2-1σ scheme was introduced by Alikhanov [15].
This type of scheme is used to design numerical methods for different kinds of fractional
equations [16–18]. It is worth pointing out that other approaches have been employed successfully
to solve numerically time-fractional diffusive equations. As an example, some implicit-explicit
(IMEX) difference methods have been proposed to solve time-fractional subdiffusion equations [19],
reaction-diffusion equations [20], multi-term time-fractional diffusion models [21], multidimensional
fractional diffusion equations [22] and nonlinear stiff fractional partial differential equations [23].

It is important to point out that higher order schemes for Caputo derivatives have been
built in recent years based on the L1, L1-2 and L2-1σ approaches [24]. In the case of L1 schemes,
the improvements have relied on the use of piece-wise high-degree interpolating polynomials instead
of linear interpolations. For the L1-2 approach, the new schemes were obtained by means of linear
interpolating polynomials on the first subinterval, and quadratic polynomials on the remaining
ones. However, in spite of the popularity and wide applicability of L1, L1-2 and L2-1σ schemes,
the analysis of those methods for time-fractional nonlinear problems is limited mainly due to the lack
of a fundamental Grönwall-type inequality [25]. In [26], the authors established such a fundamental
inequality for the L1 approximation of the Caputo derivative, and used that result to provide optimal
error estimates of several fully discrete linear Galerkin finite element methods for nonlinear problems.
In the present work, we will put emphasis on the one-dimensional scenario. It is worth pointing out
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that there are other works in the literature —such as reference [27]—, which tackle the one-, two- and
three-dimensional cases.

Motivated by those and other efforts [27], we depart from a Crank–Nicholson scheme to solve
linear time-fractional heat equations previously reported in the literature [28]. In that work, the authors
used arguments based on Fourier analysis to prove that the proposed method is stable, and that
the numerical approximations converge conditionally to the exact solution, with order O(τ2−α + h2).
In our present work, we carry out the stability and the convergence analyses by using discrete
energy inequalities on a compact difference scheme. We apply that compact approach Crank–Nicolson
discretization proposed by [28] and establish thus the stability and the convergence properties of the
scheme. The novelty of the present approach lies on the introduction of a novel discrete fractional
Grönwall inequality appropriate to the modified L1 approximation formula. It is worth pointing
out that some reports published in the literature for the integer case α = 1 have provided numerical
schemes with orders of convergence of O(τ + h2) (see reference [29]). In the present case, however,
we report on a finite-difference scheme with order of convergence O(τ2−α + h2), which is temporally
inferior to [29] in terms of convergence rates.

2. Compact Difference Scheme

In this section, we will present a Crank–Nicholson numerical model to solve (1a)–(1c). To that end,
let M, N ∈ N, and define h = L/M and τ = T/N. Define also xi = ih, tk = kτ and tk+ 1

2
= (k + 1

2 )τ =
1
2 (tk + tk+1). The space-time grid is the set Ωhτ = Ωh ×Ωτ , where Ωh = {xi ∈ R | 0 ≤ i ≤ M} and
Ωτ = {tk ∈ R | 0 ≤ k ≤ N}. The space of all real functions defined on Ωhτ will be denoted byW .
For any v ∈ W , 1 < i < M and 0 ≤ k < N, let

vk+ 1
2

i =
1
2

(
vk

i + vk+1
i

)
, (3)

δxvk
i+ 1

2
=

1
h

(
vk

i+1 − vk
i

)
, (4)

δ2
xvk

i =
1
h2

(
vk

i+1 − 2vk
i + vk

i−1

)
. (5)

Finally, the real number Uk
i will denote a numerical approximation to the exact value of u(xi, tk),

for each 0 ≤ i ≤ M and 0 ≤ k ≤ N. Obviously, U ∈ W .
Our first result yields a consistent formula to approximate second-order spatial derivatives with a

high order of consistency. The proof can be found in Lemma 4.1 of Liao and Sun [30].

Lemma 1. Suppose that q ∈ C6[xi−1, xi+1]. Then there is ωi ∈ (xi−1, xi+1) such that

h4

240
q(6)(ωi) =

1
12
(
q′′(xi−1) + 10q′′(xi) + q′′(xi+1)

)
− 1

h2 (q(xi−1)− 2q(xi) + q(xi+1)) . (6)

The following result provides a consistent formula to approximate Caputo fractional derivatives.
We provide it without proof, but the derivation is summarized as Equation (2.1) of Karatay et al. [28].

Lemma 2. If 0 < α < 1 then the following approximation formula is satisfied:

∂αu(xi, tk+ 1
2
)

∂tα
= ω1Uk

i +
k−1

∑
m=1

(ωk−m+1 −ωk−m)Um
i −ωkU0

i +
σ

21−α

(
Uk+1

i −Uk
i

)
+O

(
τ2−α

)
, (7)
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where

ωi =σ

((
i +

1
2

)1−α

−
(

i− 1
2

)1−α
)

, (8)

σ =
1

ταΓ(2− α)
, (9)

for each 0 ≤ i ≤ M and 0 ≤ k ≤ N − 1.

Substituting the approximation formula (7) into Equation (1a) at the point (xi, tk+ 1
2
),

we readily obtain

ω1Uk
i +

k−1

∑
m=1

(ωk−m+1 −ωk−m)Um
i −ωkU0

i +
σ

21−α

(
Uk+1

i −Uk
i

)
+O

(
τ2−α

)
= K

∂2u(xi, tk+ 1
2
)

∂x2 + f (xi, tk+ 1
2
, u(xi, tk+ 1

2
)).

(10)

The following result provides consistency properties of the method proposed in this work.
Its proof is based on a straightforward use of Taylor’s theorem.

Lemma 3. Let p = (p0, p1, . . . , pM) ∈ RM+1, and define

Api =
1

12
(pi−1 + 10pi + pi+1), 1 ≤ i ≤ M− 1. (11)

If u ∈ C(6,2)([0, L]× [0, T]) then

A

[
ω1Uk

i +
k−1

∑
m=1

(ωk−m+1 −ωk−m)Um
i −ωkU0

i +
σ

21−α

(
Uk+1

i −Uk
i

)]

= Kδ2
xUk+ 1

2
i +A f

(
xi, tk+ 1

2
,

3
2

Uk
i −

1
2

Uk−1
i

)
+ Rk+ 1

2
i ,

(12)

where |Rk+ 1
2

i | = O
(
h4 + τ2−α

)
, for each 1 ≤ i ≤ M− 1 and 0 ≤ k ≤ N − 1.

Proof. Using Taylor’s expansions, the following identities hold:

∂2u(xi, tk+ 1
2
)

∂x2 =

(
∂2u(xi, tk)

∂x2 +
∂2u(xi, tk+1)

∂x2

)
+O

(
τ2
)

, (13)

u(xi, tk+ 1
2
) =Uk+ 1

2
i =

3
2

Uk
i −

1
2

Uk−1
i +O

(
τ2
)

, (14)

for each 1 ≤ i ≤ M − 1 and 0 ≤ k ≤ N − 1. Substituting these expressions into (10), using the
continuity of the derivatives of f in its third component and rearranging terms, we obtain

ω1Uk
i +

k−1

∑
m=1

(ωk−m+1 −ωk−m)Um
i −ωkU0

i +
σ

21−α

(
Uk+1

i −Uk
i

)
+O

(
τ2−α

)
=

K
2

(
∂2u(xi, tk)

∂x2 +
∂2u(xi, tk+1)

∂x2

)
+O

(
τ2
)
+ f

(
xi, tk+ 1

2
,

3
2

Uk
i −

1
2

Uk−1
i

)
.

(15)
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On the other hand, Lemma 1 implies that there is θk
i ∈ (xi−1, xi+1) with

A
∂2u(xi, tk)

∂x2 = δ2
xUk

i +
h4

240
∂6u
∂x6 (θ

k
i , tk). (16)

Applying now the operator A to (15) and using then the regularity assumption on u, we readily
reach the conclusion of this result.

The finite-difference scheme to approximate the solutions of (1) is obtained by neglecting Rk+ 1
2

i in
the formula of Lemma 3, and replacing Uk

i by uk
i in (12). In that way, we obtain the discrete equations

A

[
ω1uk

i +
k−1

∑
m=1

(ωk−m+1 −ωk−m)um
i −ωku0

i +
σ

21−α

(
uk+1

i − uk
i

)]
=

= Kδ2
xuk+ 1

2
i +A f

(
xi, tk+ 1

2
,

3
2

uk
i −

1
2

uk−1
i

)
,

(17a)

with the discrete initial and boundary conditions

uk
0 = φ0(tk), uk

M = φL(tk), 1 ≤ k ≤ N, (17b)

u0
i = ψ(xi, t0), 0 ≤ i ≤ M. (17c)

3. Auxiliary Lemmas

In the present section, we will establish some technical results to prove the stability and the
convergence of the difference scheme, including a new discrete fractional Grönwall inequality which
will be the cornerstone of this report. Some additional discrete nomenclature will be needed firstly.

Definition 1. Let Vh = {v = (v0, . . . , vM) ∈ RM+1 | v0 = vM = 0} be a grid function space on Ωh, and let
u, v ∈ Vh. It follows that u = (u0, u1, . . . , uM) and v = (v0, v1, . . . , vM). Using these conventions, we define
the discrete inner product and the discrete norms

〈u, v〉A =h
M−1

∑
i=1

(Aui)(vi), (18)

|u|21 = h
M

∑
i=1

(δxui− 1
2
)2, (19)

‖u‖∞ = max
1≤i≤M−1

|ui|, (20)

and let ‖ · ‖ be the Euclidean norm induced by 〈·, ·〉.

The inequalities in the next result were proved in Lemma 4.2 of [31]. They will be useful to provide
bounds across discrete norms.

Lemma 4. For any u ∈ Vh the following inequalities are satisfied:

1
3
‖u‖2 ≤ ‖u‖2

A ≤ ‖u‖2, (21)

‖u‖∞ ≤
√

L
2
|u|1, (22)

‖u‖2 ≤ L2

6
|u|21. (23)

The next lemma is a discrete analog of the formula for integration by parts.
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Lemma 5. If u, v ∈ Vh, then −h
M−1

∑
i=1

(δ2
xui)vi = h

M

∑
i=1

(δxui− 1
2
)(δxvi− 1

2
).

Proof. The proof is a result of some easy (though tedious) algebraic calculations in which the formula
for telescoping sums is used. We refer to [32] for a proof of this and other interesting results on
summation by parts in more general settings.

Note that the time-fractional approximation (7) can be rewritten as

∂αu(xi, tk+ 1
2
)

∂tα
=

τ1−α

Γ(2− α)

[
aα

k−m+1ut,m−1 + aα
0ut,k

]
+O

(
τ2−α

)
, (24)

where aα
0 = 1/21−α, and aα

l = (l + 1
2 )

1−α − (l − 1
2 )

1−α for each l ≥ 1. As a consequence, we reach

∂αu(xi, tk+ 1
2
)

∂tα
=

τ1−α

Γ(2− α)

k

∑
m=0

Ck+1
k−mut,m. (25)

Here, ut,m = τ−1(um+1 − um). Meanwhile, ck+1
0 = aα

0 for j = 0. For j ≥ 1,

Ck+1
m =


aα

0 , m = 0,
aα

m, 1 ≤ m ≤ k− 1,
aα

k , m = k.
(26)

Definition 2. If 0 < α < 1 and u(x, ·) ∈ C2[0, T] then

∂αu(xi, tk+ 1
2
)

∂tα
=

k

∑
n=0

gk+1
n [u(xi, tn+1)− u(xi, tn)] +O

(
τ2−α

)
, (27)

where

gk+1
n =

τ−α

Γ(2− α)
Ck+1

k−n. (28)

For convenience, we will agree that

∆αuk+ 1
2

i =
k

∑
n=0

gk+1
n [u(xi, tn+1)− u(xi, tn)] . (29)

It is worthwhile to point out that the approximation of the time-fractional derivative provided in
Lemma 2 coincides with that of Definition 2 (see [28]).

The proof of the following result is an easy modification of arguments used in [28]. We provide
the prove herein for the sake of completeness. The result provides properties of the coefficients Ck+1

m .

Lemma 6. Let 0 < α < 1 be such that 3α ≥ 3
2 . For each 0 ≤ m ≤ k and k ≥ 1, the coefficients Ck+1

m satisfy

Ck+1
k >

1− α

2

(
k +

1
2

)−α

, (30)

Ck+1
0 > Ck+1

1 > . . . > Ck+1
k−1 > Ck+1

k . (31)
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Proof. Let k ≥ 1. Note that

Ck+1
k =

1
21−α

[
(2k + 1)1−α − (2k− 1)1−α

]
>

1− α

2

(
1
2

)−α ∫ 1

0

dη

(2k + 1− η)α

>
1− α

2

(
1
2

)−α

(2k + 1)−α >
1− α

2

(
k +

1
2

)−α

,

(32)

and

Ck+1
0 =

(
1
2

)1−α

>
1− α

2

(
1
2

)−α

, (33)

whence (30) readily follows. Now, Ck+1
1 > . . . > Ck+1

k−1 > Ck+1
k holds in view that aα

l > aα
l+1, for each

l ≥ 1. Since 3α ≥ 3
2 then aα

0 ≥ aα
1 , whence (31) readily follows.

The following result is a straightforward consequence of Lemma 6 and Equation (28). It provides
some monotonicity properties of the coefficients in (27).

Lemma 7. If 0 < α < 1 is such that 3α ≥ 3
2 , then the coefficients gk+1

k in (27) satisfy

gk+1
k > gk+1

k−1 > . . . > gk+1
1 > gk+1

0 (34)

and

gk+1
0 =

τ−αCk+1
k

Γ(2− α)
≥

1−α
2 (k + 1

2 )
−α

ταΓ(2− α)
≥ 1− α

2TαΓ(2− α)
≡ k0. (35)

The following result is Lemma 1 in [15] with new notation. We refer to that work for the proof.

Lemma 8. Suppose that gk+1
k > gk+1

k−1 > . . . > gk+1
0 > 0 for each k = 0, 1, . . . , M− 1. If v is any real-valued

function defined on Ωτ then

vk+1∆αvk+ 1
2 ≥ 1

2
∆α(vk+ 1

2 )2 +
1

2gk+1
k

(∆αvk+ 1
2 )2, (36)

vk∆αvk+ 1
2 ≥ 1

2
∆α(vk+ 1

2 )2 − 1
2(gk+1

k − gk+1
k−1)

(∆αvk+ 1
2 )2. (37)

The next result readily follows from Lemma 8.

Corollary 1. If the hypotheses of the previous theorem hold then(
1
2

vk+1 +
1
2

vk
)

∆αvk+ 1
2 ≥ 1

2
∆α(vk+ 1

2 )2. (38)

More technical properties are summarized in the following result. In particular, they provide
some estimations required in the sequel. The result is a small modification of Lemma 3.2 in [26].

Lemma 9. Let {pn}∞
n=0 be the sequence defined as p0 = 1, and

(
1
2

)1−α

pj =
j

∑
r=1

(
Ck+1

r−1 − Ck+1
r

)
pj−r, ∀j ≥ 1. (39)

Then the following estimations are valid:

(a) If 1 ≤ k ≤ j then 0 < pj < 1 and ∑
j
r=k pj−rck+1

r−k =
(

1
2

)1−α
.
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(b) If m ≥ 1 then

Γ(2− α)

Γ(1 + (m− 1)α)

j

∑
r=1

pj−rr(m−1)α ≤

(
1
2

)1−α
jmα

Γ(1 + mα)
. (40)

The proof of the next result follows as in Lemma 3.3 of [26].

Lemma 10. Let −→e = [1, 1, . . . , 1]> ∈ Rj, and define

J = 2
(

1
2

)α−1
Γ(2− α)λτα



0 0 p1 . . . pj−3 pj−2
0 0 0 . . . pj−4 pj−3
...

...
...

. . .
...

...
0 0 0 . . . 0 p1

0 0 0 . . . 0 0
0 0 0 . . . 0 0


. (41)

Then Ji = 0 for each i ≥ j + 1. Moreover,

Jm−→e ≤ −→B ,
i

∑
r=0

Jr−→e =
j

∑
r=0

Jr−→e ≤ −→B E, (42)

for each m ∈ N∪ {0} and i ≥ j + 1. Here,

−→
B =

1
Γ(1 + mα)

[
(2λtα

j )
m, (2λtα

j−1)
m, . . . , (2λtα

1)
m
]>

, (43)

−→
B E =[Eα(2λtα

j ), Eα(2λtα
j−1), . . . , Eα(2λtα

1)]
> (44)

The proof of the following result follows in the same lines as Lemma 3.1 of [26].

Theorem 1 (Discrete fractional Grönwall inequality). Assume that 0 < α < 1. Let {ωi}∞
i=0 and {gn}∞

n=0
be non-negative sequences, and let λi are nonnegative constants, which are independent of τ. If λ1 > 0 and

∆αω j+1/2 ≤ λ1ω j + λ2ω j−1 + gj, ∀j ∈ {1, . . . , N}, (45)

then there exists a positive constant τ∗ ≥ τ such that

ω j+1 ≤ 2

(
ω0 +

tα
j

Γ(1 + α)
max

0≤j0≤j
gj0

)
Eα(2λtα

j ). (46)

Here, Eα(z) represents the Mittag–Leffler function and

λ = λ1 +
λ2

Cj+1
0 − Cj+1

1

. (47)

Proof. Using the discrete approximation formula (25), we can readily check that

j

∑
r=0

Cj+1
j−r

(
ωr+1 −ωr

)
≤ ταΓ(2− α)

(
λ1ω j + λ2ω j−1 + gj

)
. (48)
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Multiply both sides of (48) by pn−j and sum over j from 0 to n. On the other hand, Lemma 9 yields

(
1
2

)1−α

(ωn+1 −ω0) =
n

∑
r=0

(ωr+1 −ωr)
n

∑
j=r

pn−jc
j+1
j−r =

n

∑
j=0

pn−j

j

∑
r=0

Cj+1
j−r

(
ωr+1 −ωr

)
≤ ταΓ(2− α)

n

∑
j=0

pn−j

(
λ1ω j + λ2ω j−1 + gj

) (49)

and

ταΓ(2− α)
n

∑
j=0

pn−j gj ≤
(

1
2

)1−α tα
n

Γ(1 + α)
max

1≤j≤n
gj, (50)

for all n ≥ 0. Suppose that τα ≤ ( 1
2 )

1−α/(2Γ(2− α)λ1), and convey that

ψn = ω0 + tα
n[Γ(1 + α)]−1 max

1≤j≤n
gj. (51)

Note that if n, k ∈ N are such that n ≥ k ≥ 1, then ψn ≥ ψk. As a consequence,

ωn+1 ≤ ψn +

(
1
2

)α−1
ταΓ(2− α)

n

∑
j=0

pn−j

(
λ1ω j + λ2ω j−1

)
≤ 2ψn + 2

(
1
2

)α−1
Γ(2− α)τα

[
λ1

n−1

∑
j=0

pn−jω
j + λ2

n

∑
j=0

pn−jω
j−1

]
.

(52)

Let
−→
V = [ωn+1, ωn, . . . , ω0]>. Then (52) can be written in a matrix form as

−→
V ≤ (λ1 J1 + λ2 J2)

−→
V + 2ψn

−→e , (53)

where −→e = [1, 1, . . . , 1]> ∈ Rn+2. Moreover, Jl = 2( 1
2 )

α−1Γ(2 − α)ταKl , for each l ∈ {1, 2}.
Here, each Kl is a real matrix of size (n + 2)× (n + 2) defined, respectively, by

K1 =



0 0 p1 · · · pn−1 pn

0 0 0 · · · pn−2 pn−1
...

...
...

. . .
...

...
0 0 0 · · · 0 p1

0 0 0 · · · 0 0
0 0 0 · · · 0 0


(54)

and

K2 =



0 0 p0 · · · pn−2 pn−1

0 0 0 · · · pn−3 pn−2
...

...
...

. . .
...

...
0 0 0 · · · 0 p0

0 0 0 · · · 0 0
0 0 0 · · · 0 0


, (55)

It follows from Lemma 9 that (cj+1
j−1 − cj+1

j )pi−j ≤ pi is satisfied, for each 1 ≤ j ≤ i. As a

consequence, J2
−→
V ≤ (cj+1

0 − cj+1
1 )−1 J1

−→
V . Then

−→
V ≤ λJ1

−→
V + 2ψn

−→e = J
−→
V + 2ψn

−→e from (53).
Here, J and λ are defined in (41) and (47), respectively. Thus,

−→
V ≤ J(J

−→
V + 2Ψn

−→e ) + 2Ψn
−→e = J2−→V + 2Ψn

1

∑
j=0

J j−→e ≤ · · · ≤ Jn+1−→V + 2Ψn

n

∑
j=0

J j−→e . (56)
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The conclusion readily follows now after an application of Lemma 10.

4. Numerical Properties

In this section, we establish mathematically the most important properties of the difference
scheme. More precisely, we will prove that the discrete model has a unique solution, and that it is
stable and convergent.

Theorem 2 (Unique solvability). Scheme (17) is uniquely solvable.

Proof. The solution at the time t0 is prescribed by the initial conditions. So, let 0 ≤ k ≤ N − 1 and
suppose that uk

i is known, for each 0 ≤ i ≤ M. From (17a), we obtain a system of linear algebraic
equations in terms of ul

i . The coefficient matrix of this system is strictly diagonally dominant, so there
exists a unique solution. Indeed, note that (17) can be rewritten as

A f
(

xi, tk+ 1
2
, 3

2 uk
i − 1

2 uk−1
i

)
=

[
σ

21−α
− K

2h2

]
uk+1

i+1 +

[
10
12

σ

21−α
+

K
h2

]
uk+1

i +

[
1
12

σ

21−α
− K

2h2

]
uk+1

i−1

+

[
1

12
(ω1 −

σ

21−α
)− K

2h2

]
uk

i+1 +

[
10
12

(ω1 −
σ

21−α
) +

K
h2

]
uk

i

+

[
1

12
(ω1 −

σ

21−α
)− K

2h2

]
uk

i−1 +A

(
k−1

∑
m=1

(ωk−m+1 −ωk−m)um
i −ωku0

i

)
.

(57)
The coefficient matrix takes the form A = (aij), where

aii =
10
12

σ

21−α
+

K
h2 , (58)

ai+1,i = ai−1,i =
1

12
σ

21−α
− K

2h2 , (59)

and σ/21−α > 0. The matrix A is clearly strictly diagonally dominant.

Using the consistent approximation formula (27), the difference scheme (17) can be rewritten as

A∆αuk+ 1
2

i = Kδ2
xuk+ 1

2
i +A f

(
xi, tk+ 1

2
, 3

2 uk
i − 1

2 uk−1
i

)
, (60a)

with initial and boundary conditions

uk
0 = φ0(tk), uk

M = φL(tk), 1 ≤ k ≤ N, (60b)

u0
i = ψ(xi, t0), 0 ≤ i ≤ M. (60c)

In the following, we define εk
i = u(xi, tk)− uk

i for each 0 ≤ i ≤ M and 0 ≤ k ≤ N, and convey that

Fk+ 1
2

i (ui(·)) = f
(

xi, tk+ 1
2
, 3

2 uk
i − 1

2 uk−1
i

)
, (61)

Fk+ 1
2

i (uxi (·)) = f
(

xi, tk+ 1
2
, 3

2 u(xi, tk)− 1
2 u(xi, tk−1)

)
. (62)

Using these conventions, it is easy to check that the next identity holds:

Ah∆αε
k+ 1

2
i = Kδ2

xε
k+ 1

2
i +Ah

(
Fk+ 1

2
i (uxi (·))− Fk+ 1

2
i (ui(·))

)
+ Rk+ 1

2
i . (63)

Definition 3. Let q1, q2 ≥ 1. The difference model (17) is convergent with order hq1 + τq2 if there exists a
constant C independent of εk

i , h and ∆ such that |εk
i | ≤ C(hq1 + τq2), for all 0 ≤ i ≤ M and 0 ≤ k ≤ N.
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Theorem 3 (Convergence). Let 0 < α < 1 be such that 3α ≥ 3
2 , and let (uj)N

j=0 be the unique solution of the
system (17). If f is Lipschitz continuous in its third component, then the method is convergent with convergence
order h4 + τ2−α.

Proof. Multiplying each side of (63) by hε
k+ 1

2
i and adding over all indexes i from 1 to M− 1, we obtain

h
M−1

∑
i=1

(εk+1/2
i )Ah∆αεk+1/2

i = Kh
M−1

∑
i=1

(εk+1/2
i )(δ2

xε
k+ 1

2
i ) + h

M−1

∑
i=1

(ε
k+ 1

2
i )Rk+ 1

2
i

+ h
M−1

∑
i=1

(εk+1/2
i )Ah

(
Fk+1/2

i (uxi (·))− Fk+1/2
i (ui(·))

)
.

(64)

Using Corollary 1 on the left-hand side of (64), and that εk
0 = εk

M = 0 for each k = 0, 1, . . . , N,
we obtain

h
M−1

∑
i=1

(ε
k+ 1

2
i )Ah∆αε

k+ 1
2

i ≥ 1
2

∆α‖εk+ 1
2 ‖2
A. (65)

Next, we use Lemmas 4 and 5, the Cauchy–Schwarz inequality and algebraic simplifications on
the right-hand side of (64). In that way, we reach

Kh
M−1

∑
i=1

(εk+1/2
i )(δ2

xε
k+ 1

2
i ) + h

M−1

∑
i=1

(ε
k+ 1

2
i )Ah

(
Fk+ 1

2
i (uxi (·))− Fk+ 1

2
i (ui(·))

)
+ h

M−1

∑
i=1

(ε
k+ 1

2
i )Rk+ 1

2
i

≤ L2

12K

M−1

∑
i=1

hL2
1

∣∣∣∣32 εk
i −

1
2

εk−1
i

∣∣∣∣2 + L2

12K

M−1

∑
i=1

h|Rk+ 1
2

i |2

≤ Kh
M−1

∑
i=1

(δ2
xε

k+ 1
2

i )2 +
1
2

M−1

∑
i=1

h|Rk+ 1
2

i |2 + 1
4

hL2
1

M−1

∑
i=1
|3εk

i − εk−1
i |2

≤ Kh
M−1

∑
i=1

(δ2
xε

k+ 1
2

i )2 +
1
2

M−1

∑
i=1

h|Rk+ 1
2

i |2 + 15
4

hL2
1

M−1

∑
i=1
|εk

i |2 +
1
2

hL2
1

M−1

∑
i=1
|εk−1

i |2

≤ L2

12K

[ M−1

∑
i=1

h|Rk+ 1
2

i |2 + 15
4

L2
1‖εk‖2 +

1
2

L2
1‖εk−1‖2

]
,

(66)

where L1 is a Lipschitz constant for the function f in the third component. Substitute now (65) and (66)
into (64), use again Lemmas 4 and 5 and employ the error of approximation to note that there exists a
positive constant C1 independent of h and τ, such that

∆α‖εk+ 1
2 ‖2
A ≤

L2

12K

[
15
2

L2
1‖εk‖2 + L2

1‖εk−1‖2 + Rτ,h

]
≤ L2

4K

(
15
2

L2
1‖εk‖2

A + L2
1‖εk−1‖2

A

)
+ Rτ,h, (67)

where Rτ,h = C1(τ
2−α + h4)2. Applying now Theorem 1, we obtain

‖εk+1‖2
A ≤ 2

(
C1tα

k
Γ(1 + α)

(τ2−α + h4)2
)

Eα(2λtα
k ). (68)

Lemmas 4 and 5 yield now the conclusion of this theorem.

Next, we analyze the numerical stability of the compact difference scheme (17). More precisely,
we will show that small perturbations on the initial conditions lead to small changes on the final
solutions. To this end, we will suppose that vi

k is the solution of

A∆αvk+ 1
2

i = Kδ2
xvk+ 1

2
i +A f

(
xi, tk+ 1

2
, 3

2 vk
i − 1

2 vk−1
i

)
, (69a)

subject to the initial and boundary conditions
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vk
0 = φ0(tk), vk

M = φL(tk), 1 ≤ k ≤ N, (69b)

v0
i = ψ(xi, t0) + ρ0

i , 0 ≤ i ≤ M, (69c)

where ρ0
i is a small perturbation of ψ(xi, t0).

Definition 4. The numerical scheme (17) is stable if the discrete numerical solutions uk
i satisfying (17),

together with the solutions vk
i satisfying (69), are such that

‖ηk‖∞ = ‖uk − vk‖∞ ≤ C̄|ρ0|1, ∀k ∈ {0, 1, . . . , N}, (70)

where C̄ is a nonnegative constant which is independent of h and τ.

Theorem 4 (Stability). If 0 < α < 1 satisfies 3α ≥ 3
2 , then the compact difference scheme (60) is stable.

Proof. Subtracting (69) form (60) we obtain

A∆αη
k+ 1

2
i = Kδ2

xη
k+ 1

2
i +A

[
f
(

xi, tk+ 1
2
, 3

2 uk
i − 1

2 uk−1
i

)
− f

(
xi, tk+ 1

2
, 3

2 vk
i − 1

2 vk−1
i

)]
, (71)

as well as the conditions

η0
i =ρ0

i , 0 ≤ i ≤ N, (72)

ηk
0 =ηk

N = 0, 0 ≤ k ≤ M. (73)

Multiply each side of (63) by hη
k+ 1

2
i and add over all indexes i from 1 to N − 1. From this point

on, we mimic the proof of Theorem 3 to complete the proof.

In the following example, we examine the stability of the scheme for various values of α.

Example 1. Let L = T = 1, and consider the time-fractional partial differential equation

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2 + x(1− x)
6t5/2

Γ(7/2)
+ 2(t3 + 1), 0 < x < 1, 0 < t < 1, (74a)

with initial-boundary conditions

u(x, 0) = x(1− x), 0 ≤ x ≤ 1, (74b)

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ 1. (74c)

It is well known that this problem has the exact solution U(x, t) = x(1− x)(t3 + 1) when α = 1
2 . Figure 1

shows the numerical solution of this problem when α = 1
2 , using the parameters h = 0.01 and τ = 0.001.

The results exhibit the stability of the finite-difference scheme. We have used other values of the parameter α in
(0, 1), though no analytical solution is known in exact form for those cases. Our results (not shown here to avoid
redundancy) have shown that the solutions are stable when 0.369 / α ≤ 1. If 0 < α / 0.369, then the solutions
are still stable despite the fact that the theoretical results are not valid for such case.
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Figure 1. Numerical solution of the problem (74) using L = T = 1 and α = 1
2 . We used the method

presented in this work with computational parameters h = 0.01 and τ = 0.001.

Before closing this section, it is worth pointing out that the results presented herein are
only theoretically valid for smooth functions. Indeed, this is a potentially strong limitation of our
approach in view that some important classes of solutions to the problem (1) are excluded (see [33]).
Also, our theoretical analysis uses the techniques of energy estimates employed in [28], and it is only
valid for smooth functions. This approximation can be extended for non-smooth functions also [34],
and its analysis could be a topic of work in the near future.

5. Conclusions

In this work, we departed from a difference scheme previously reported in the literature,
which was used to solve a nonlinear time-fractional heat equation. The efficiency analysis carried out
in that previous work relied in the use of Fourier analysis. Meanwhile, the present approach uses the
method of energy inequalities to show that the scheme is stable and converges to the exact solution
with order O(τ2−α + h4) if 3α ≥ 3

2 and 0 < α < 1, that is, when 1 > α ' 0.369. The novelty of the
present work lies in the derivation of a new discrete fractional Grönwall inequality, which is consistent
with the discrete approximation of the Caputo fractional derivative of order 0 < α < 1. The numerical
experiments presented in this work show that the restrictions on α may be entirely theoretical, and that
a wider range of values of α may lead to stable results. To that end, the further development of the
theoretical background is necessary. In that sense, the investigation of the case when the number
0 < α < 1 satisfies 3α < 3

2 is an open problem of research. To this day, the authors have not been able
to establish an affirmative solution to this case at tk+1/2. However, we have been able to check that the
arguments used in this work to establish the stability and convergence of the scheme unfortunately do
not carry over to the case when α / 0.369. We are convinced that new analytical tools (in the form of
novel Grönwall-type inequalities) are required to that end. That may be the topic of a future work.
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