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Abstract

In 1987 A.V. Pestryakov proved a series of theorems for cardinal functions
of the space Bα(X) of all real-valued functions of Baire class α (α > 0), and
he conjectured that most of these theorems are true for spaces containing
all finite linear combinations of characteristic functions of zero-sets in X . In
this paper we investigate for which theorems of Pestryakov generalizations
are valid. Also we prove some additional propositions for function spaces
applying the theory of selection principles.
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1. Introduction

In this paper by a space we shall always mean a Tychonoff space. Let
Cp(X) denote the space of continuous real-valued functions C(X) on a space
X with the topology of pointwise convergence. Let B0(X) = C(X) and
inductively define Bα(X) for each ordinal α ≤ ω1 to be the space of pointwise
limits of sequences of functions in

⋃
β<α

Bβ(X). So Bα(X) a set of all functions

of Baire class α, defined on a Tychonoff space X , provided with the pointwise
convergence topology.

The family of Baire sets of a space X is the smallest family of sets con-
taining the zero sets of continuous real-valued functions (i.e. of the form
Z(f) = {x ∈ X : f(x) = 0}), and closed under countable unions and count-
able intersections. The Baire sets of X of multiplicative class 0, denoted
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Z(X), are the zero-sets of continuous real-valued functions. The sets of ad-
ditive class 0, denoted CZ(X), are the complements of the sets in Z(X).

Let A and B be sets whose elements are families of subsets of an infinite
set X . Then S1(A,B) denotes the selection principle:

For each sequence (An : n ∈ N) of elements of A there is a sequence
(bn : n ∈ N) such that for each n, bn ∈ An, and {bn : n ∈ N} is an element of
B.

The following prototype of many classical properties is called ”A choose
B” in [22].(

A

B

)
: For each A ∈ A there exists B ⊂ A such that B ∈ B.

Clearly that S1(A,B) implies
(
A

B

)
.

In this paper, by a cover we mean a nontrivial one, that is, U is a cover
of X if X =

⋃
U and X /∈ U .

A cover U of a space X is:
• an ω-cover if every finite subset of X is contained in a member of U .
• a γ-cover if it is infinite and each x ∈ X belongs to all but finitely many

elements of U . Note that every γ-cover contains a countably γ-cover.
For a topological space X we denote:
• Ω — the family of all open ω-covers of X ;
• Γ — the family of all open γ-covers of X ;
• ZΩ — the family of all countable ω-covers of X by zero-sets in X ;
• ZΓ — the family of all countable γ-covers of X by zero-sets in X .

Let (X, τ) be a topological space. The Baire topology τb on X is the
topology on the underlying set X having for a basis the family of all zero-
sets of X . Since the countable intersection of zero-sets is also a zero-set, it
follows that the space X endowed with the Baire topology and denoted by
Xℵ0

is a P -space. Recall that a topological space is called a P -space if the
intersection of a countable family of open sets is open. Let us recall also
that the family of Gδ-sets in X forms a base of the topology τδ on X , and
the space X with the topology τδ is called the P -modification of X and is
denoted by PX or Xδ (see [4, 6, 9]). Clearly, PX is a P -space and τδ is finer
than the Baire topology τb. If X is a Tychonoff space, then Xℵ0

= PX and
Xℵ0

is a Tychonoff space. Note that the topology Xℵ0
coincides with the

weak topology generated by Bα(X) for each α > 0 ([16]).
Further, we consider the spaces C(Xℵ0

) and Bα(X) with the topology of
pointwise convergence.

We will use the standard notation for usual cardinal invariants, so c, χ,
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πχ, ψ, w, πw, ψw, nw, d, t, l, s, denote cellularity, character, π-character,
pseudocharacter, weight, π-weight, pseudoweight, network weight, density,
tightness, the Lindelöf number, spread, respectively, see [7, 8]. For a cardinal
function ǫ denoted by hǫ(Y ) = {ǫ(Z) : Z ⊆ Y }, iǫ(Y ) = min{ǫ(Z) : Y admits
a one-to-one continuous mapping onto a space Z} and ǫ∗(Y ) = sup{ǫ(Y n) :
n ∈ N}.

Since Bα(X) is dense in R
X (0 ≤ α ≤ ω1), c(Bα(X)) = ω0, πχ(Bα(X)) =

χ(Bα(X)) = πw(Bα(X)) = w(Bα(X)) = |X|.
In 1987 A.V. Pestryakov proved the following theorems (P1-P9) for a

space Bα(X) (0 < α ≤ ω1)([17, 18]).

Theorem 1.1. (P1) t(Bα(X)) = l∗(Xℵ0
).

Theorem 1.2. (P2) hd(Bα(X)) = hl∗(Xℵ0
).

Theorem 1.3. (P3) hl(Bα(X)) = hd∗(Xℵ0
).

Theorem 1.4. (P4) s(Bα(X)) = s∗(Xℵ0
).

Theorem 1.5. (P5) The followings statements are equivalent.

1. Bα(X) is Fréchet-Urysohn;

2. Bα(X) is sequential;

3. Bα(X) is a k-space;

4. Bα(X) is a ω1-k-space;

5. Bα(X) has countable tightness;

6. Xℵ0
satisfies

(
Ω
Γ

)
;

7. Xℵ0
is Lindelöf.

Theorem 1.6. (P6) d(Bα(X)) = iw(X).

Theorem 1.7. (P7) For 0 < α ≤ ω1, ψ(Bα(X)) = ψw(Bα(X)) = iχ(Bα(X)) =
iw(Bα(X)) = d(Xℵ0

).

Theorem 1.8. (P8) nw(Bα(X)) = nw(Xℵ0
).

Theorem 1.9. (P9) l(Bα(X)) ≥ t∗(Xℵ0
).

Put L(X) = {n1 · fZ1
+ ... + nk · fZk

: fZi
is the characteristic function

of Zi, Zi ∈ Z(X), k, i, nk ∈ N}. For a space X , define B = {Y : L(X) ⊆
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Y ⊆ C(Xℵ0
)}. For example, Bα(X) ∈ B for each α > 0, C(Xℵ0

) ∈ B and
[Cp(X)]′ω0

=
⋃
{clRXB : B ⊂ Cp(X), |B| ≤ ω0} ∈ B.

Pestryakov conjectured that most of theorems (P1-P9) are true for any
B(X) ∈ B. In this paper we check for which Pestryakov’s theorems general-
izations are valid. Also we prove some additional propositions for spaces in
the class B.

2. Tightness

The following result is well known [2].

Theorem 2.1. (Arhangel’skii-Pytkeev) t(Cp(X)) = l∗(X).

We prove an analogue of Theorem P1 and the Arhangel’skii-Pytkeev The-
orem for a space B(X) ∈ B.

Theorem 2.2. t(B(X)) = l∗(Xℵ0
).

Proof. Since t(Cp(Y )) = l∗(Y ) for a space Y (the Arhangel’skii-Pytkeev The-
orem) and B(X) ⊆ C(Xℵ0

), then t(B(X)) ≤ l∗(Xℵ0
).

Fix n ∈ N. Assume that η is an open cover ofXn
ℵ0
. Clearly that, whenever

V ∈ η and x = (x1, ..., xn) ∈ V there exists Wx =
n∏

i=1

{Vxi
: Vxi

is an open in

Xℵ0
and xi ∈ Vxi

} such that x ∈ Wx ⊂ V . Then we can consider the cover
µ = {Wx : x ∈ Xn} of Xn

ℵ0
such that µ is a refinement of η.

For each x = (x1, ..., xn) ∈ Xn denote x̃ = {x1, ..., xn} ⊂ X .
Let m ∈ N, z = (z1, ..., zm) ∈ Xm.
Fix F (zi) ∈ Z(X) such that zi ∈ F (zi) (1 ≤ i ≤ m) and if x̃ ⊂ z̃ (i.e.

x = (zi1 , ..., zin)) then F (zik) ⊂ Vzik (k = 1, ..., n).
Let fz be the characteristic function of

⋃
{F (zi) : 1 ≤ i ≤ m}. The

symbol 1 stands for the constant function to 1. Note that F = {fz : z ∈⋃
{Xm : 1 ≤ m < ω}} ⊂ B(X) and 1 ∈ F . Then there exists F ′ ⊂ F such

that 1 ∈ F ′, |F ′| ≤ τ = t(B(X)). Then there is A ⊂ Xm such that |A| ≤ τ
and F ′ = {fz ∈ F : z ∈ A}. Let Y = {y ∈ Xn : ỹ ⊂ z̃, z ∈ A}. Clearly that
|Y | ≤ τ .

We claim that {Wy : y ∈ Y } ⊂ µ is a cover of Xn. Let x ∈ Xn. Then
W = {f ∈ B(X) : f(t) > 0 for all t ∈ x̃} is a neighborhood of 1. There is

an fz ∈ F ′
⋂
W . We have x̃ ⊂

m⋃
i=1

F (zi). Let xk ∈ F (zik) for 1 ≤ k ≤ n,
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y = (zi1 , ..., zin). Then y ∈ Y and x ∈
∏
{F (zik) : 1 ≤ k ≤ n} ⊂

∏
{Vyk : 1 ≤

k ≤ n} = Wy.

Corollary 2.3. t(Bα(X)) = t([C(X)]′ω0
) = t(Cp(Xℵ0

)) = l∗(Xℵ0
) (α > 0).

Recall that a space is said to be scattered if every nonempty subspace of
it has an isolated point.

Note that if X is scattered, then l(X) = l(Xℵ0
) [9]. Then we have the

following result.

Corollary 2.4. If X is scattered, then t(B(X)) = l∗(X).

Note that l(Xℵ0
) = ω0 implies that l(Xn

ℵ0
) = ω0 [10].

Corollary 2.5. t(B(X)) = t(Cp(Xℵ0
)) = ω0 if and only if Xℵ0

is Lindelöf.

3. Hereditary density

The following result is well known in Cp-theory [2] (for hd(Cp(X)) = ω0

see [23]).

Theorem 3.1. hd(Cp(X)) = hl∗(X).

We prove an analogue of this theorem and Theorem P2 for a space in
class B.

Theorem 3.2. hd(B(X)) = hl∗(Xℵ0
).

Proof. Since hd(Cp(Y )) = hl∗(Y ) for a space Y and B(X) ⊆ Cp(Xℵ0
), then

hd(B(X)) ≤ hl∗(Xℵ0
).

Let Y be a subspace of Xn
ℵ0
, we consider the family µ = {Wy : y ∈ Y } of

sets in Y where Wy =
n∏

i=1

{Zyi : Zyi is a zero-set in X , yi ∈ Zyi} such that

Y ⊆
⋃
µ and |µ| = l(Y ). Then γ = {Wy ∩ Y : Wy ∈ µ} is an open cover of

Y .

Suppose A = {fZy
: Zy =

n⋃
i=1

Zyi ,Wy ∩Y ∈ γ and fZy
is the characteristic

function of Zy}. Note that A ⊂ B(X). Let D ⊂ A such that |D| < |A| ≤ |γ|.
Then the family η = {Wy∩Y : fZy

∈ D} is not a cover of Y . Hence, there are
Wy ∈ µ and y ∈ Y such thatWy∩Y /∈ η and y = (y1, ..., yn) ∈ Wy∩(Y \

⋃
η).

Then {h : |h(yi)− fZy
(yi)| < 1, 1 ≤ i ≤ n} ∩D = ∅. It follows that D is not

dense in A, and d(A) ≥ l(Y ).

5



Corollary 3.3. hd(Bα(X)) = hd([C(X)]′ω0
) = hd(Cp(Xℵ0

)) = hl∗(Xℵ0
)

(α > 0).

Note that if X is scattered, then hl(X) = hl(Xℵ0
) [9]. Then we have the

following result.

Corollary 3.4. If X is scattered, then hd(B(X)) = hd(Cp(Xℵ0
)) = hl∗(X).

4. Hereditary Lindelöf degree

The following result is well known in Cp-theory [2, 23]

Theorem 4.1. If ind(X) = 0, then hl(Cp(X)) = hd∗(X).

Note that ind(Xℵ0
) = 0 for any space X . Then we have the following

theorem.

Theorem 4.2. hl(B(X)) = hd∗(Xℵ0
).

Proof. Since ind(Xℵ0
) = 0 and B(X) ⊆ Cp(Xℵ0

), then, by Theorem 4.1,
hl(B(X)) ≤ hd∗(Xℵ0

).
First we prove an auxiliary proposition.

Proposition 4.3. If Y ⊂ Xn is such that whenever y = (y1, ..., yn) ∈ Y and
yi 6= yj for i 6= j, then hl(B(X)) ≥ d(Yℵ0

).

Proof. For each y = (y1, ..., yn) ∈ Y we fix a local base β(y) at y in Xn
ℵ0

the

following of the form β(y) = {V =
n∏

i=1

Vi : yi ∈ Vi ∈ Z(X), Vi ∩ Vj = ∅ for

i 6= j}. Let

fV (x) =





i, if x ∈ Vi,

0, if x ∈ X \
n⋃

i=1

Vi,

and A = {fV : V ∈ β(y), y ∈ Y }. Clearly that A ⊂ B(X). Let U(y) =
{f ∈ B(X) : |f(yi) − i| < 1} and γ = {U(y) : y ∈ Y }. Then γ is a cover of
A. There is a subcover γ′ ⊆ γ such that |γ′| = l(A) ≤ hl(B(X)). Consider
S = {y ∈ Y : U(y) ∈ γ′}. Note that |S| ≤ |γ′|. We claim that S is dense in
Yℵ0

. Fix z = (z1, ..., zn) ∈ Y , V ∈ β(z). Then fV ∈ A and there is U(y) ∈ γ′

such that fV ∈ U(y). It follows that y ∈ V ∩ S and S is dense in Yℵ0
.
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Now, by indiction on n, we claim that hl(B(X)) ≥ hd(Xn
ℵ0
).

For n = 1 by Proposition 4.3.
Suppose that hl(B(X)) ≥ hd(Xk

ℵ0
) for k < n. Note thatXn

ij = {(x1, ..., xn) :
xi = xj} for i 6= j is homeomorphic to the space Xn−1. Set D =

⋃
{Xn

ij : 1 ≤
i 6= j ≤ n}. Let Z ⊆ Xn. Then, by Proposition 4.3, d(Zℵ0

\D) ≤ hl(B(X))
and, by the inductive hypothesis, d(Zℵ0

) ≤ d(Zℵ0
\D)+

∑
1≤i 6=j≤n

d(Zℵ0
∩Xn

ij) ≤

hl(B(X)).

Corollary 4.4. hl(Bα(X)) = hl([C(X)]′ω0
) = hl(Cp(Xℵ0

)) = hd∗(Xℵ0
)

(α > 0).

5. Spread

The well-known the following result in Cp-theory [2].

Theorem 5.1. If ind(X) = 0, then s(Cp(X)) = s∗(X).

Since ind(Xℵ0
) = 0 for any space X , we have the following theorem for

the spread s(B(X)) of a space B(X) from the class B.

Theorem 5.2. s(B(X)) = s∗(Xℵ0
).

Proof. Since ind(Xℵ0
) = 0 and B(X) ⊆ Cp(Xℵ0

), then, by Theorem 5.1,
s(B(X)) ≤ s∗(Xℵ0

).
First we prove an auxiliary proposition.

Proposition 5.3. Assume that Y ⊂ Xn is such that whenever y = (y1, ..., yn) ∈
Y and yi 6= yj for i 6= j. If Y is discrete in Xn

ℵ0
, then |Y | ≤ s(B(X)).

Proof. For each y = (y1, ..., yn) ∈ Y we fix V =
n∏

i=1

Vi such that V ∩Y = {y},

yi ∈ Vi ∈ Z(X), Vi ∩ Vj = ∅ for i 6= j. Let

fV (x) =






i, if x ∈ Vi,

0, if x ∈ X \
n⋃

i=1

Vi,

and A = {fV : y ∈ Y }. Clearly that A ⊂ B(X) and |A| = |Y |. We claim
that A is discrete. If fU ∈ (fV , y, 1) ∩ A, then |fU(yi)− i| < 1 for 1 ≤ i ≤ n.
Hence, y = (y1, ..., yn) ∈ U . It follows that U = V and fU = fV .
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Now, by indiction on n, we claim that s(B(X)) ≥ s(Xn
ℵ0
).

For n = 1 by Proposition 5.3.
Suppose that s(B(X)) ≥ s(Xk

ℵ0
) for k < n. Note that Xn = X̃n ∪ D,

where D =
⋃
{Xn

ij : 1 ≤ i 6= j ≤ n}, Xn
ij = {(x1, ..., xn) : xi = xj},

X̃n = Xn \ D. Let Y be discrete in Xn
ℵ0
. Put Y1 = Y ∩ X̃n, Y2 = Y ∩ D,

then Y = Y1 ∩ Y2. By Proposition 5.3, |Y1| ≤ s(B(X)). If i 6= j, then Xn
ij

is homeomorphic to the space Xn−1 and, hence, |Y2| ≤ s(Xn−1
ℵ0

). By the
inductive hypothesis, |Y2| ≤ s(B(X)). Note that |Y | = |Y1|+ |Y2|. It follows
that s(B(X)) ≥ s∗(Xℵ0

).

Corollary 5.4. s(Bα(X)) = s([C(X)]′ω0
) = s(Cp(Xℵ0

)) = s∗(Xℵ0
) (α > 0).

6. Modification of Theorem P5.

Let κ be an infinite cardinal. A space C is said to be κ-initially compact
(see [12]) if every open cover V of C with |V| ≤ κ has a finite subcover. A
space E is a κ-k (κ-k-space), if whenever the subspace A is non-closed in E,
there is a κ-initially compact subspace C of E with C ∩ A non-closed in C
([15]).

In 1982, Pytkeev [19] and Gerlits [15] independently proved the following
result.

Theorem 6.1. (Pytkeev-Gerlits) For a space X, the following are equivalent:

1. Cp(X) is Fréchet-Urysohn;

2. Cp(X) is sequential;

3. Cp(X) is a k-space.

Gerlits and Nagy defined three properties [14, 15]:
• the property (γ): for every open ω-cover V of X there exists a sequence

Gn ∈ V such that {Gn : n ∈ ω} is a γ-cover of X (
(
Ω
Γ

)
in terminology of

selection principles).
• the property (ǫ) is one of the following equivalent properties:
(a) Xn is Lindelöf for all n ∈ ω (l∗(X) = ω0);
(b) Every open ω-cover of X contains a countable ω-subcover;
(c) t(Cp(X)) = ω0.
• the property (ϕ): whenever U =

⋃
{Un : n ∈ N} is an open ω-cover of

X , Un ⊂ Un+1 (n ∈ N), there exists a sequence Xn ⊂ X such that limXn = X
and Xn is ω-covered by Un.
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Gerlits proved that a space X has the property (γ) if and only if it has
both (ϕ) and (ǫ) (Theorem 1 in [15]).

Let X be a topological space, and x ∈ X . A subset A of X converges to
x, x = limA, if A is infinite, x /∈ A, and for each neighborhood U of x, A\U
is finite. Consider the following collection:

• Ωx = {A ⊆ X : x ∈ A \ A};
• Γx = {A ⊆ X : x = limA}.

In 1982 Gerlits and Nagy [14] proved

Theorem 6.2. (Gerlits-Nagy) For a space X, the following are equivalent:

1. Cp(X) satisfies S1(Ω0,Γ0);

2. Cp(X) is Fréchet-Urysohn;

3. X satisfies S1(Ω,Γ);

4. X has the property (γ), i.e. X satisfies
(
Ω
Γ

)
.

In 1984, A.V. Arhangel’skii [1] proved the following theorem in the class
of P -spaces.

Theorem 6.3. (Arhangel’skii) For a P -spaceX, the following are equivalent:

1. Cp(X) has countable tightness;

2. Cp(X) is Fréchet-Urysohn;

3. X is Lindelöf.

Similar to Theorem 3 in [15], we get the next result.

Theorem 6.4. If B(X) is a ω-k-space, then Xℵ0
has the property (ϕ).

Proof. Otherwise B(X) is a ω-k-space, yet X has not the property (ϕ), and
let U =

⋃
{Un : n ∈ N} witness this. Put for n ∈ N, n ≥ 1 and An =

{f ∈ B(X) : f−1(−∞, n) is ω-covered by Un}, A =
⋃
{An : n ∈ N}. Then

An is closed in B(X) for any n. On the other hand, A is not closed in
B(X), because 0 ∈ A \ A. As B(X) is a ω-k-space, there is a countably
compact subset C of B(X) such that C ∩ A is non-closed in C. As C is
countably compact, so also is each of its projections on the real line: for each
x ∈ X there is an n(x) ∈ N such that for each f ∈ C, f(x) ≤ n(x). Put
Xn = {x ∈ X : n(x) ≤ n}. As the sets Xn monotonically increase and their
union is X , we have limXn = X . Using now that {Un} witnesses that X has
not (ϕ), we get an m ∈ ω such that no Uk ω-covers Xm.

9



Note that C ∩ Ak = ∅ if m < k < ω. Indeed, let f ∈ Ak, m < k < ω.
f−1(−∞, k) is ω-covered by Uk, but Xm is not, so Xm \ f−1(−∞, k) 6= ∅,
hence, there is a point x ∈ Xm such that f(x) ≥ k > m and n(x) ≤ m. The
definition of Xm implies now that f /∈ C.

However, this is impossible because then C ∩ A =
⋃
{C ∩ Ak : k ≤ m}

would be closed in C, contrary to the choice of C.

The following theorem is proved similarly to Theorem 4 in [15]; therefore,
we omit the proof of this theorem.

Theorem 6.5. If B(X) is a ω1-k-space, then Xℵ0
has the property S1(Ω,Γ).

Now we can consider a modification of Theorem P5.

Theorem 6.6. Let X be a Tychonoff space and B(X) ∈ B. Then the follow-
ing are equivalent.

1. B(X) is Fréchet-Urysohn;

2. B(X) is sequential;

3. B(X) is a k-space;

4. B(X) is a ω1-k-space;

5. B(X) has countable tightness;

6. Xℵ0
satisfies S1(Ω,Γ);

7. Xℵ0
is Lindelöf.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4), (1) ⇒ (5) are immediate. Since B(X) ⊆
C(Xℵ0

), then, by Theorem 6.2, we have that (6) ⇒ (1) holds.
By Lemma 2.2, we have that (5) ⇒ (7).
By Theorem 6.5, if B(X) is a ω1-k-space, then Xℵ0

satisfies S1(Ω,Γ), i.e.
(4) ⇒ (6) holds.

(7) ⇒ (1). Since Xℵ0
is a P -space, then, by Theorem 6.3, we have that

Cp(Xℵ0
) is Fréchet-Urysohn. But B(X) ⊆ Cp(Xℵ0

), hence B(X) is Fréchet-
Urysohn, too.

Corollary 6.7. Let X be a Tychonoff space. Then the following are equiv-
alent.

1. Cp(Xℵ0
) is Fréchet-Urysohn;
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2. Cp(Xℵ0
) is sequential;

3. Cp(Xℵ0
) is a k-space;

4. Cp(Xℵ0
) is a ω1-k-space;

5. Cp(Xℵ0
) has countable tightness;

6. Xℵ0
satisfies S1(Ω,Γ);

7. Xℵ0
is Lindelöf.

Corollary 6.8. Let B(X) be a ω1-k-space and B1(X) ⊆ B(X). Then
B1(X) = B(X) = C(Xℵ0

).

Corollary 6.9. Assume that Xℵ0
satisfies S1(Ω,Γ). Then B1(X) = C(Xℵ0

).

Corollary 6.10. Assume that X is a perfectly normal space and Bα(X) is
k-space for some 1 ≤ α ≤ ω1. Then X is countable.

Proposition 6.11. There exists a space X such that Bα(X) is a ω-k-space,
but not a ω1-k-space.

Proof. Let X be the space ω2 \ L, where L denotes the set of ω-limits in ω2;
then X = Xℵ0

, Cp(X) = Bα(X) (0 ≤ α ≤ ω1) and Bα(X) is ω-k but not
ω1-k (see Example in [15]).

Proposition 6.12. There exists a space X such that ω0 = t(Cp(X)) <
t(Bα(X)) for α > 0.

Proof. The space Cp([0, 1]) is not sequential (Fréchet-Urysohn, k-space), but
ω0 = t(Cp([0, 1])) < t(Bα([0, 1])) = c for any α > 0.

Proposition 6.13. (MA+¬ CH) There exists a set of reals X such that
Cp(X) is sequential, but t(B(X)) > ω0 for any B(X) ∈ B.

Proof. By Theorem 1 in [13], assuming Martin’s axiom, there exists a set of
reals X of cardinality the continuum such that X has the property S1(Ω,Γ).
Then Xℵ0

is not Lindelöf and, hence, by Theorem 6.6, t(B(X)) > ω0 for any
B(X) ∈ B.

Theorem 6.14. If B(X) is a ω-k-space, then X satisfies S1(ZΩ, ZΓ).

Proof. Let α = {Fi : i ∈ N} be a ω-cover of X by zero-sets of X . Consider
A = {hn : hn = n · fn, fn is the characteristic function of X \ Fn, Fn ∈ α,
n ∈ N}. Note that 0 ∈ A \ A. Hence, there exists a countably compact
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set C such that A
⋂
C is not a closed subset of C. Since C is a countably

compact set, whenever x ∈ X there is n(x) ∈ N such that f(x) < n(x) for
each f ∈ C. Let Xn = {x ∈ X : f(x) < n for each f ∈ C}. Then Xn+1 ⊇ Xn

and X =
⋃
n

Xn.

If for every n there exists i(n) such that Xn ⊆ Fi(n), then {Fi(n) : n ∈ N}
is a γ-cover of X . Otherwise, there is an n′ such that Xn′ \ Fi 6= ∅ for
each i ∈ N. Fix an n ∈ N such that n > n′. There is an x ∈ Xn′ \ Fn

such that hn(x) = n > n′. It follows that hn /∈ C. Thus, we have that
A
⋂
C = {hi : i < n′ + 1}

⋂
C is not a closed subset of C, a contradiction.

Recall that a space X is called proper analytic if it admits a perfect map
onto an analytic subset of a complete separable metric space. A space X is
disjoint analytic if and only if it is a one-to-one continuous image of a proper
analytic space [16]. Note that any K-Lusin space is a disjoint analytic space.

Theorem 6.15. Let X be a disjoint analytic space and B1(X) ⊆ B(X).
Then the following are equivalent:

1. X is scattered;

2. B(X) is Fréchet-Urysohn.

Proof. If X is scattered, then l(X) = l(Xℵ0
) [9]. By Theorem 6.6, B(X) is

Fréchet-Urysohn.
If B(X) is Fréchet-Urysohn, then, by Theorem 6.6 and Corollary 6.8,

B1(X) = B(X) = Cp(Xℵ0
). Then, by Theorem 6 in [16], X is scattered.

It is well-known that for a compact space X , Cp(X) is Fréchet-Urysohn
if and only if Cp(X) is a k-space if and only if X is scattered [15, 19].

Corollary 6.16. For a compact space X and α > 0, Bα(X) is Fréchet-
Urysohn if and only if Bα(X) is a k-space if and only if X is scattered.

Thus we have that if a compact spaceX is not scattered, then t(Bα(X)) ≥
l(Xℵ0

) ≥ c.
Note that there exists a scattered space Z such that t(B1(Z)) > ω0.

Example 6.17. Let Z be the set of all countable ordinals endowed with the
interval topology. Then Z is scattered pseudocompact and t(B1(Z)) > ω0.

12



A.V. Arhangel’skii [3] (see also [24]) asked the question: For what com-
pact spaces X does the inequality l(Xℵ0

) ≤ c hold ?
It is well-known that the answer is positive in the following cases:
1. X is a finite product of ordered compact spaces [24].
2. X is a compact space of countable tightness [20].
3. X is a weakly Corson compact space [21].
This implies, in particular, t(Bα(X)) ≤ c for any space X in these classes

of spaces.
In [3, 24], it was shown that the Lindelöf number of Xℵ0

for a compact
spaceX can be arbitrary large (for example, the Stone-Čech compactification
β(D) of a discrete space D). Therefore, the tightness of Bα(X) for compact
spaces X is not bounded. E.G. Pytkeev proved the following remarkable
result (Theorem 1.1. in [21]).

Theorem 6.18. (Pytkeev) Let X be a Tychonoff space. Then
t(Cp(X)) ≤ t(Bα(X)) ≤ exp(t(Cp(X)) · t(X)).

7. Density

Recall that the i-weight iw(X) of a space X is the smallest infinite car-
dinal number τ such that X can be mapped by a one-to-one continuous
mapping onto a Tychonoff space of the weight not greater than τ .

Theorem 7.1. (Noble [11]) d(Cp(X)) = iw(X).

Let A ⊂ Y . Put [A]′τ =
⋃
{B : B ⊂ A, |B| ≤ τ}, T (x,A, Y ) = min{τ :

x ∈ [A]′τ}, T (A, Y ) = sup{T (x,A, Y ) : x ∈ A}. Then T (Cp(X), Bα(X)) =
ω0. Since Cp(X) is dense in Bα(X), d(Bα(X)) ≤ d(Cp(X)) = iw(X).

Let µ = d(Bα(X)). Then there is D ⊂ Bα(X) such that |D| = µ and
D = Bα(X). The equality T (Cp(X), Bα(X)) = ω0 means that [Cp(X)]′ω0

=
Bα(X). For each d ∈ D, fix a set Cd ⊂ Cp(X) such that |Cd| ≤ ω0 and
d ∈ Cd. Then the set S =

⋃
{Cd : d ∈ D} is dense in Cp(X) and |S| ≤ µ.

Hence, d(Bα(X)) ≥ d(Cp(X)). Thus, we have the Theorem P6 of Pestryakov
that d(Bα(X)) = iw(X) (0 < α ≤ ω1).

Example 7.2. Let X be a first-countable space such that |X| ≤ c and
iw(X) > ω0. Then d(Bα(X)) = iw(X) > iw(Xℵ0

) = d(Cp(Xℵ0
)).

13



For example, if Z is the set of all countable ordinals endowed with the
interval topology, then d(Bα(Z)) > d(Cp(Zℵ0

)).
Note also that if c < 2ω1 then |Bω1

(Z)| = c < 2ω1 = |Cp(Zℵ0
)|, otherwise

|Bω1
(Z)| = |Cp(Zℵ0

)|.

8. Pseudocharacter, pseudoweight

It is well-known that ψ(Cp(X)) = iw(Cp(X)) = d(X) [2].

Theorem 8.1. ψ(B(X)) = ψw(B(X)) = iχ(B(X)) = iw(B(X)) = d(Xℵ0
).

Proof. Note that if there exists a condensation (one-to-one continuous map)
f : Y → Z of a space Y onto a space Z then ψ(Y ) ≤ ψ(Z) ≤ χ(Z) ≤ w(Z)
and ψ(Y ) ≤ ψw(Z) ≤ w(Z). Since the space Z is arbitrary, we get that
ψ(Y ) ≤ iχ(Y ) ≤ iw(Y ) and ψ(Y ) ≤ ψw(Y ) ≤ iw(Y ).

Since iw(Cp(X)) = d(X) (Theorem 7.1) and B(X) ⊂ Cp(Xℵ0
), it is

enough to prove that d(Xℵ0
) ≤ ψ(B(X)).

Assume that d(Xℵ0
) > ψ(B(X)). Let {0} =

⋂
{Uξ : ξ ∈ M}, |M | =

ψ(B(X)). We can assume that Uξ = (x1(ξ), ..., xn(ξ), ǫ(ξ)) = {f : f ∈
B(X), |f(xi(ξ))| < ǫ(ξ)}. Let A = {xi(ξ) : ξ ∈ M, 1 ≤ i ≤ n(ξ)}. Since
|A| < d((Xℵ0

), there exists a zero-set D in X such that D ∩ A = ∅. Note
that the characteristic function χD of the set D is in B(X), χD 6= 0 and
χD ∈

⋂
{Uξ : ξ ∈M}, a contradiction.

9. Network weight

Lemma 9.1. Define the function ϕ : Xℵ0
→ Cp(B(X)) by the rule: ϕ(x)(f) =

f(x) for each f ∈ B(X). Then Xℵ0
is homeomorphic to ϕ(Xℵ0

) ⊂ Cp(B(X)).

Proof. Obviously, ϕ is bijection from Xℵ0
onto ϕ(Xℵ0

).
Note that B(X) ⊂ Cp(Xℵ0

). The equality ϕ−1({h : h ∈ ϕ(Xℵ0
), |h(fi) −

ϕ(x)(fi)| < ǫ, 1 ≤ i ≤ n, fi ∈ B(X)}) =
n⋂

i=1

f−1
i (fi(x) − ǫ, fi(x) + ǫ) implies

that ϕ is a continuous map.
The set ϕ(M) = {h : h ∈ ϕ(X), |h(χM) − 1| < 1} for a characteristic

function χM of the zero-set M is an open set in ϕ(X). Thus, ϕ−1 is a
continuous map.

Theorem 9.2. nw(B(X)) = nw(Xℵ0
).
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Proof. Since nw(Cp(Y )) = nw(Y ) for a Tychonoff space Y [2] and B(X) ⊆
C(Xℵ0

) we get that nw(B(X)) ≤ nw(Xℵ0
). By Lemma 9.1, nw(Xℵ0

) ≤
nw(Cp(B(X)). Thus, nw(Xℵ0

) ≤ nw(B(X)).

Note that nw(X) ≤ nw(Xℵ0
) ≤ nw(X)ω0. Then we have the following

result.

Corollary 9.3. If κ = κω0 , then nw(B(X)) = nw(Cp(Xℵ0
)) = nw(X) = κ.

10. The Lindelöf number

The following result is well known in Cp-theory [5].

Theorem 10.1. (Asanov) l(Cp(X)) ≥ t∗(X).

For a space B(X) ∈ B, we have the following result.

Theorem 10.2. l(B(X)) ≥ t∗(Xℵ0
).

Proof. Denote as usually [Y ]<ω the set of all non-empty finite subsets of a
space Y . Consider the topological space Yp = ([Yℵ0

]<ω, τ) where the topology
τ generated by the base β = {H∗ : H∗ = {F ∈ [Yℵ0

]<ω : F ⊂ H} for any
open H in Y }. Since t(Y n) ≤ t(Yp) for every n ∈ ω [5] it is enough to prove
that t(Xℵ0p) ≤ l(B(X)).

Let M ⊂ Xℵ0p and S ∈ M \M . Note that the family {< p, (−1, 1) >:
p ∈ M} is a cover of the set {f : f ∈ B(X), f(S) = 0} where < p, (−1, 1) >=
{f : f ∈ B(X), f(p) ⊂ (−1, 1)}. Since {f : f ∈ B(X), f(S) = 0} is closed in
B(X), choose M ′ ⊂ M such that |M ′| ≤ l(B(X)) and {< p, (−1, 1) >: p ∈
M ′} is a cover of {f : f ∈ B(X), f(S) = 0}. Then S ∈M ′.

Note that l(B1([0, 1])) = c > ω0 = t∗([0, 1]ℵ0
).

Question. Is it possible to replace Xℵ0
by X in Theorem 10.2 ?
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