Микроструктурные особенности и комплексные электромеханические параметры бессвинцовых сегнетопьезокерамик

<u>Н.А. Швецова</u>¹, М.А. Луговая¹, И.А. Швецов¹, А.П. Турыгин², В.Я. Шур², А.Н. Рыбянец¹

¹Южный федеральный университет, 344090 Ростов-на-Дону, Россия e-mail: wbeg161@gmail.com

²Уральский федеральный университет, 620002 Екатеринбург, Россия

Интерес к бессвинцовым сегнетопьезокерамикам связан, главным образом, с возрастающим вниманием к экологическим проблемам. Среди известных бессвинцовых керамик на основе ниобатов щелочных металлов наибольший практический интерес представляют сегнетопьезокерамики на основе твердых растворов (Na,Li)NbO₃ [1], демонстрирующие низкие значения диэлектрической проницаемости ($\varepsilon_{33}^{T}/\varepsilon_{0} \approx 150$) и плотности ($\rho \approx 4500 \text{ г/сm}^3$) при высоких значениях механической добротности ($Q_m \approx 1000$) и пьезоэлектрических параметров ($d_{33} \approx 40$ пКл/Н). Такой набор параметров делает эти составы конкурентоспособными и перспективными для ряда высокочастотных ультразвуковых применений. Однако, несмотря на длительные исследования, высокочастотные свойства бессвинцовых сегнетопьезокерамик до настоящего времени практически не исследовались. В литературе также отсутствуют данные о полных наборах упругих, диэлектрических и пьезоэлектрических параметрах, а также особенностях микрои доменной структуры ниобатных сегнетопьезокерамик.

Целью настоящей работы являлось исследование микроструктурных особенностей и комплексных упругих, диэлектрических и пьезоэлектрических параметров бессвинцовых сегнетопьезокерамик на основе твердых растворов системы (Na,Li)NbO₃ в диапазоне частот до 100 МГц.

В качестве объекта исследования была выбрана бессвинцовая сегнетопьезокерамика состава Na_{0.86625}Li_{0.12375}Sr_{0.01}Nb_{0.988}Al_{0.01}O_{2.995} [1]. В структурном отношении выбранный состав представлял собой двухфазную систему сосуществующих ромбической и ромбоэдрической фаз с преобладанием ромбической фазы. Экспериментальные образцы сегнетопьезокерамики получались методом крупноблочного горячего прессования. Исследуемые образцы пьезокерамики представляли собой диски, отполированные с одной стороны, поляризованные перпендикулярно плоскости полировки.

Визуализация рельефа поверхности керамики проводилась с помощью сканирующего электронного микроскопа Merlin (Carl Zeiss, Германия) с использованием детекторов Inlens и SE2 Carl Zeiss (ускоряющее напряжение 3 - 5 кВт, рабочее расстояние 2.3 - 5.2 мм). Визуализация сегнетоэлектрической доменной структуры выполнялась с помощью сканирующего зондового микроскопа Asylum MFP-3D (Asylum Research, CША). Измерения проводились в режиме силовой микроскопии пьезоэлектрического отклика (СМПО). Для измерений использовались зонды серии HA_NC W2C (ScanSens) с W2C покрытием и радиусом закругления зонда 10 нм. Измерения комплексных упругих, диэлектрических и пьезоэлектрических параметров пьезоэлементов выполнялись на стандартных образцах с помощью анализатора импеданса Agilent 4294A и программы анализа резонансных спектров PRAP по разработанной авторами методике [2]. Для получения полного набора комплексных констант использовался стандартный для класса симметрии 6 мм набор одномерных мод колебаний и набор образцов различной формы и размеров. Частотные зависимости комплексных электромеханических параметров экспериментальных образцов исследовались путем последовательного анализа импедансных спектров для основного резонанса и резонансов высших порядков толщинной моды колебаний [2]. Микрофотографии полированной поверхности и доменной структуры образцов пьезокерамики приведены на Рисунках 1 и 2.

Из микрофотографий видно, что исследованная горячепрессованная пьезокерамика характеризуется низкой пористостью Р \approx 1%, хаотичной упаковкой кристаллитов с

прямыми и искривленными границами кристаллитов средним размером $R \approx 7$ мкм и периодической доменной структурой, типичной для ниобатных пьезокерамик. Полный набор комплексных констант исследованной сегнетопьезокерамики приведен в Таблице 1.

Рисунок 1. SEM микрофотография полированной поверхности образца сегнетопьезокерамики $Na_{0.86625}Li_{0.12375}Sr_{0.01}Nb_{0.988}Al_{0.01}O_{2.995}$.

Рисунок 2. Микрофотографии доменной структуры образца Na_{0.86625}Li_{0.12375}Sr_{0.01}Nb_{0.988}Al_{0.01}O_{2.995}: (а) топограмма, (б) вертикальная, (в) латеральная компоненты сигнала СМПО.

Параметр	Действительная	Мнимая часть	Параметр	Действительная	Мнимая часть
	часть			часть	
<i>S</i> ^{<i>E</i>} ₁₁ (м²/Н)	6.81 · 10 ⁻¹²	$-1.34 \cdot 10^{-14}$	d ₁₅ (Кл/Н)	3.04 · 10 ⁻¹¹	$-1.98 \cdot 10^{-12}$
<i>S</i> ^{<i>E</i>} ₁₂ (м ² /Н)	$-1.38 \cdot 10^{-12}$	$3.49 \cdot 10^{-15}$	d ₃₁ (Кл/Н)	- 1.01 · 10 ⁻¹¹	$1.1 \cdot 10^{-13}$
S_{13}^E (m ² /H)	$-1.04 \cdot 10^{-12}$	-	d ₃₃ (Кл/Н)	3.19 · 10 ⁻¹¹	$-2.02 \cdot 10^{-12}$
<i>S</i> ^{<i>E</i>} ₃₃ (м²/Н)	7.02 · 10 ⁻¹²	$-9.73 \cdot 10^{-14}$	$\varepsilon_{11}^T \left(\Phi / \mathbf{M} \right)$	$1.32 \cdot 10^{-9}$	$-1.18 \cdot 10^{-10}$
<i>S</i> ^{<i>E</i>} ₅₅ (м²/Н)	1.58 · 10 ⁻¹¹	$-6.56 \cdot 10^{-14}$	$\varepsilon_{33}^T \left(\Phi / \mathrm{m} \right)$	1.12 · 10-9	- 1.94 · 10 ⁻¹¹
S_{66}^{E} (m ² /H)	1.64 · 10-11	$-3.37 \cdot 10^{-14}$	ρ (кг/м ³)	4.5·10 ³	-

Таблица 1. Комплексные	константы исследованной	сегнетопьезокерамики.
1	F 1	

Исследование частотных зависимостей электрофизических параметров в частотном диапазоне до 100 МГц показало, что исследованная бессвинцовая сегнетопьезокерамика наряду с низкой диэлектрической проницаемостью, низкой плотностью и высокой скоростью звука, характеризуется отсутствием упругой дисперсии и относительно низким по сравнению с пьезокерамиками системы ЦТС затуханием ультразвуковых волн в высокочастотном диапазоне и может быть использована в высокочастотных ультразвуковых преобразователях для медицинской техники и неразрушающего контроля.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования РФ (научный проект № 0852-2020-0032 (БАЗ0110/20-3-08ИФ)).

1. Y. Saito, H. Takao, T. Tani, et al., Nature 432 (2004).

2. M.A. Lugovaya, I.A. Shvetsov, N.A. Shvetsova, et al., Ferroelectrics 571, 263 (2021).