
381

Bystrov Alexander Sergeevich

Student

Ural Federal University

Russia, Ekaterinburg

Academic supervisor: Kovaleva Aleksandra Georgievna

GRAPHICAL PROCESSORS USE IN NON-RELATED GRAPHICS TASKS

Abstract. Graphical Processing Units are made to speed up calculations of

computer graphics. Modern GPU`s architecture allows not only calculating graphics,

but also working on tasks for general computing. The main target of this paper is to

analyze GPU`s performance in different tasks and to compare GPU`s CUDA

architecture with standard CPU`s x86-64 architecture.

Keywords: GPU, CPU, algorithms, CUDA, x64.

Быстров Александр Сергеевич

Студент

Уральский федеральный университет имени первого

Президента России Б.Н. Ельцина

Россия, г. Екатеринбург

Научный руководитель: Ковалева Александра Георгиевна

ИСПОЛЬЗОВАНИЕ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ В

ЗАДАЧАХ, НЕ СВЯЗАННЫХ С ГРАФИКОЙ

Аннотация. Графические процессоры были созданы для того, чтобы

ускорять обработку и отображение компьютерной графики. Современная

архитектура графических процессоров не только позволяет быстрее

рассчитывать графику, но также эффективно взаимодействовать с большими

объёмами данных. Целью данной работы является проведение анализа работы

382

графических ускорителей в различных задачах, а также проведение

сравнительного анализа архитектур графических процессоров на примере

CUDA с центральными процессорами на примере x64.

Ключевые слова: Графические ускорители, CUDA, Центральные

процессоры, Алгоритмы, x64.

Introduction

The GPU devices are designed to accelerate graphics in computing polygons,

textures, shaders, etc. Due to its architecture the scope of application is quite narrow

and GPU`s are not intended for general purpose processing. But in June 23, 2007

Nvidia Corporation introduced the Compute Unified Device Architecture or CUDA

which is a parallel computing platform and application programming interface (API),

that allows software developers and software engineers to use a CUDA-enabled

graphics processing unit for general purpose processing – an approach termed GPGPU

(General-Purpose computing on Graphics Processing Units).

The CUDA platform is a software layer that gives direct access to the GPU's

virtual instruction set and parallel computational elements, for the execution of

compute kernels. The CUDA API is designed to work with programming languages

such as C and C++. The GPU`s design is more effective than general-purpose central

processing unit (CPUs) for algorithms in situations where processing large blocks of

data is done in parallel, such as fast sorting algorithms of large lists and machine

learning.

The purpose of this study is to make a comparison and analysis of CPU and GPU

algorithms.

The first task is Biclustering which is special grouping technique able to perform

simultaneous row-column clustering (method to obtain groups of elements that share a

set of common properties). Biclustering was originally introduced in the 1970s by

Hartigan and it can be a NP-hard problem in which the search space is composed by

all the possible overlapping subsets of elements that share a common subsets of

properties. Although most of the biclustering approaches proposed in the literature are

383

based on efficient heuristics, recently big efforts have been carried out in order to adapt

them to the current scientific and technological environment, in which huge volumes

of complex data that may come from different sources are generated. To deal with this

challenge, High Performance Computing (HPC) techniques are used to take advantage

of all available hardware and software resources to create parallel and distributed

computing strategies, with the aim of solving problems that involve huge volumes of

data with a high computational cost. Besides, general-purpose computing on Graphics

Processing Units (GPU) and its most common programming model, CUDA, is one of

the most used HPC models for massive data processing.

The second task is a bitmap quering. Efficient querying of massive data

repositories relies on advanced indexing techniques that can make full use of modern

computing hardware. Though many indexing options exist, bitmap indices in particular

are commonly used for read-only scientific data. A bitmap index produces a coarse

representation of the data in the form of a binary matrix. This representation has two

significant advantages: it can be compressed using run-length encoding and it can be

queried directly using fast primitive CPU logic operations. A bitmap index is created

by discretizing a relation’s attributes into a series of bins that represent either value

ranges or distinct values. Each row in the bitmap represents a tuple from the relation.

The specific bit pattern of each row in the bitmap is generated by analyzing the

attributes of the corresponding tuple. A value of 1 is placed in the bin that encodes that

value and a value of 0 is placed in the remaining bins for that attribute for each attribute

in a tuple. One major benefit of bitmap indices is that they can be queried directly,

greatly reducing the number of tuples that must be retrieved from disk.

Algorithms representation

The main problem in this field is to develop scalable high-parallel algorithm

which takes full advantages of Graphical Processing Units architecture and deal with

special problems like warp synchronization in CUDA based GPU`s.

This part is fully devoted to implementation of algorithms in tasks of biclustering

and range-querying (bitmapping).

384

The first algorithm is gBiBit biclustering algorithm. The algorithm gBiBit may

be divided into four steps. In first step the size of the input dataset should be reduced.

The second step deals with the calculation of patterns for every pair of rows from the

output dataset of the previous step. This process is suitable to be parallelized since the

generation of each pattern is an independent task. In the third step duplicated patterns

should be removed. This step is executed completely in CPU since this part of the code

is not parallelizable. The last step which requires a huge computational cost, consists

of adding rows to each valid potential bicluster to create a final result. Taking into

account that the processing of every bicluster is an independent task, this part is suitable

to be parallelized through the CUDA architecture.

The second group of algorithms are range-querying algorithms. All represented

GPU-based range query algorithms rely on the identical preparations stage. In this

stage, the CPU sends compressed columns to the GPU. After that the GPU obtains the

compressed columns, it decompresses them in parallel. Once decompressed, the bit

vectors involved in the query are word-aligned. This alignment makes the bitwise

operation on two bit vectors an excellent fit for the massively parallel nature of GPUs.

GPU range query execution strategies: column-oriented access (COA), row-oriented

access (ROA), hybrid, and ideal hybrid access approaches. These approaches are

analogous to structure-of-arrays, array-of-structures, and a blend thereof. Structure-of-

arrays and array-of-structures approaches have been used successfully to accelerate

scientific simulations on GPUs, but differ in the how data is organized and accessed

which can impact GPU efficiency.

Results and Performance evaluation

Comparison of the performance of the gBiBit implementation with the BiBit

original algorithm and the CUBiBit version has been presented for biclustering. Also,

another version of BiBit, called ParBiBit is considered for this experimentation.

The measured execution times takes into account only the results of generation

process, so the time needed for their visualization and storage is not considered. The

four versions of the algorithm receive the same input parameters: a dataset, the

minimum number of rows required (mnr) and the minimum number of columns

385

required (mnc) for the final biclusters. These two last parameters have been set to 2,

being the least restrictive value in order to obtain the highest number of results and,

consequently, to test the performance with the maximum number of resources required.

Figure 1 demonstrates the evolution of the execution times in seconds registered for

BiBit, ParBiBit, CUBiBit and gBiBit, the last two executed with a single GPU device.

For more details, all the execution times have been collected in Table 1.

Figure 1. - Execution time in seconds for square synthetic datasets sizes

from 200 × 200 to 10 000 × 10 000.

Figure 1 also shows that gBiBit presents the best execution times. The greatest

difference is registered for the dataset with size 200 × 200. In this case, gBiBit is near

1900 times faster than CUBiBit, while the smallest difference is registered for the

4000 × 4000 dataset, for which gBiBit is 14 times faster than CUBiBit.

Table 1. Execution times in seconds for square synthetic datasets of various sizes.

Dataset BiBit, s ParBiBit, s CUBiBit, s gBiBit, s

200 × 200 0.219 0.21 13.16 0.007

400 × 400 1.362 0.83 11.10 0.011

600 × 600 3.754 1.84 8.28 0.020

800 × 800 9.664 3.55 7.01 0.038

1000 × 1000 15.807 6.11 15.33 0.066

2000 × 2000 n/a n/a 19.41 0.446

4000 × 4000 n/a n/a 52.37 3.637

6000 × 6000 n/a n/a n/a 11.475

8000 × 8000 n/a n/a n/a 27.203

10000 × 10000 n/a n/a n/a 53.555

Also, according to the Table 1 the gBiBit algorithm outperform ParBiBit

algorithm by 17.66 times in average. The comparison of the performance of the COA

and ROA implementation with the CPU algorithms with different number of cores has

386

been represented for data-quering. Also, Hybrid and Ideal-Hybrid versions are

considered for this experimentation.

Results are shown for all GPU tests compared to the iterative CPU method,

organized by data set (Figure 2). Iterative CPU range query performance typically

improves with additional cores for every data set. The only exception is the BPA data

set when transitioning from 8 to 16 cores. The GPU methods outperform the iterative

CPU method in 96.2% of these tests with an average speedup of 14.50×. The GPU

methods are capable of providing a maximum speedup of 54.14× over the iterative

CPU method. On the average, the GPU methods provide 1.45×, 20.24×, 11.45×,

17.36×, 18.76×, and 17.72× speedup for the KDD, linkage, BPA, Zipf (skew = 0), Zipf

(skew = 1), and Zipf (skew = 2) data sets, accordingly.

The GPU methods outperform the CPU reduction method (using 16 cores) in all

tests. On the average, the GPU methods provide 2.16× speedup over the reduction CPU

method when using 16 cores.

Figure 2 - Speedups (vertical axes) for the GPU methods compared to the iterative CPU

method (using the number of cores shown in the legend) grouped by the GPU range query method

(horizontal axes).

The Zipf data set skews are appended (e.g., Zipf0 is the Zipf data set with a skew

of 0). The horizontal dashed line indicates a speedup of 1×. All plots share the same

legend.

387

Conclusion

GPU technology and CUDA architecture are one of the most used options to

adapt machine learning techniques to large and complex datasets. In the case of

techniques, that are presented in this paper, they have been implemented to use GPU

resources in parallel have improved their computational performance. However, this

fact does not guarantee that these new algorithms can handle the processing of large

datasets. There are some important issues that should be taken into account, like the

data transfers between CPU and GPU memory or the balanced distribution of workload

between the GPU resources. Nonetheless wide use of graphical processing units for

general computing is limited to its API and programming languages, that may be used

with.

REFERENCES

1. Aurelio Lopez-Fernandez, Domingo Rodriguez-Baena, Francisco Gomez-

Vela, Federico Divina, Miguel Garcia-Torres// A multi-GPU biclustering algorithm for

binary datasets/ Text: electronic. – 2020- URL:

https://www.sciencedirect.com/science/article/abs/pii/S0743731520303701?via%3Di

hub - (Reference date 25.12.2020).

2. Mitchell Nelson, Zachary Sorenson, JosephM. Myre, Jason Sawin, David

Chiu2// Parallel acceleration of CPU and GPU range queries over large data sets

//Pattern Recognition 2020 - Text: electronic. – URL:

https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-020-

00191-w -(Reference date 25.12.2020).

3. Jeremy A. Sauer, Domingo Muñoz-Esparza - The FastEddy® Resident-GPU

Accelerated Large-Eddy Simulation Framework: Model Formulation, Dynamical-Core

Validation and Performance Benchmarks //Text: electronic. – URL:

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020MS002100-(Reference date

25.12.2020).

https://www.sciencedirect.com/science/article/abs/pii/S0743731520303701?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0743731520303701?via%3Dihub

