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GRAPHICAL PROCESSORS USE IN NON-RELATED GRAPHICS TASKS 

 

Abstract. Graphical Processing Units are made to speed up calculations of 

computer graphics. Modern GPU`s architecture allows not only calculating graphics, 

but also working on tasks for general computing. The main target of this paper is to 

analyze GPU`s performance in different tasks and to compare GPU`s CUDA 

architecture with standard CPU`s x86-64 architecture.  
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ИСПОЛЬЗОВАНИЕ ГРАФИЧЕСКИХ ПРОЦЕССОРОВ В 

ЗАДАЧАХ, НЕ СВЯЗАННЫХ С ГРАФИКОЙ 

 

Аннотация. Графические процессоры были созданы для того, чтобы 

ускорять обработку и отображение компьютерной графики. Современная 

архитектура графических процессоров не только позволяет быстрее 

рассчитывать графику, но также эффективно взаимодействовать с большими 

объёмами данных. Целью данной работы является проведение анализа работы 
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графических ускорителей в различных задачах, а также проведение 

сравнительного анализа архитектур графических процессоров на примере 

CUDA с центральными процессорами на примере x64. 

Ключевые слова: Графические ускорители, CUDA, Центральные 

процессоры, Алгоритмы, x64. 

 

Introduction 

The GPU devices are designed to accelerate graphics in computing polygons, 

textures, shaders, etc. Due to its architecture the scope of application is quite narrow 

and GPU`s are not intended for general purpose processing. But in June 23, 2007 

Nvidia Corporation introduced the Compute Unified Device Architecture or CUDA 

which is a parallel computing platform and application programming interface (API), 

that allows software developers and software engineers to use a CUDA-enabled 

graphics processing unit for general purpose processing – an approach termed GPGPU 

(General-Purpose computing on Graphics Processing Units).  

The CUDA platform is a software layer that gives direct access to the GPU's 

virtual instruction set and parallel computational elements, for the execution of 

compute kernels. The CUDA API is designed to work with programming languages 

such as C and C++. The GPU`s design is more effective than general-purpose central 

processing unit (CPUs) for algorithms in situations where processing large blocks of 

data is done in parallel, such as fast sorting algorithms of large lists and machine 

learning. 

The purpose of this study is to make a comparison and analysis of CPU and GPU 

algorithms. 

The first task is Biclustering which is special grouping technique able to perform 

simultaneous row-column clustering (method to obtain groups of elements that share a 

set of common properties). Biclustering was originally introduced in the 1970s by 

Hartigan and it can be a NP-hard problem in which the search space is composed by 

all the possible overlapping subsets of elements that share a common subsets of 

properties. Although most of the biclustering approaches proposed in the literature are 
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based on efficient heuristics, recently big efforts have been carried out in order to adapt 

them to the current scientific and technological environment, in which huge volumes 

of complex data that may come from different sources are generated. To deal with this 

challenge, High Performance Computing (HPC) techniques are used to take advantage 

of all available hardware and software resources to create parallel and distributed 

computing strategies, with the aim of solving problems that involve huge volumes of 

data with a high computational cost. Besides, general-purpose computing on Graphics 

Processing Units (GPU) and its most common programming model, CUDA, is one of 

the most used HPC models for massive data processing.  

The second task is a bitmap quering. Efficient querying of massive data 

repositories relies on advanced indexing techniques that can make full use of modern 

computing hardware. Though many indexing options exist, bitmap indices in particular 

are commonly used for read-only scientific data. A bitmap index produces a coarse 

representation of the data in the form of a binary matrix. This representation has two 

significant advantages: it can be compressed using run-length encoding and it can be 

queried directly using fast primitive CPU logic operations. A bitmap index is created 

by discretizing a relation’s attributes into a series of bins that represent either value 

ranges or distinct values. Each row in the bitmap represents a tuple from the relation. 

The specific bit pattern of each row in the bitmap is generated by analyzing the 

attributes of the corresponding tuple. A value of 1 is placed in the bin that encodes that 

value and a value of 0 is placed in the remaining bins for that attribute for each attribute 

in a tuple. One major benefit of bitmap indices is that they can be queried directly, 

greatly reducing the number of tuples that must be retrieved from disk. 

Algorithms representation 

The main problem in this field is to develop scalable high-parallel algorithm 

which takes full advantages of Graphical Processing Units architecture and deal with 

special problems like warp synchronization in CUDA based GPU`s. 

This part is fully devoted to implementation of algorithms in tasks of biclustering 

and range-querying (bitmapping). 
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The first algorithm is gBiBit biclustering algorithm. The algorithm gBiBit may 

be divided into four steps. In first step the size of the input dataset should be reduced. 

The second step deals with the calculation of patterns for every pair of rows from the 

output dataset of the previous step. This process is suitable to be parallelized since the 

generation of each pattern is an independent task. In the third step duplicated patterns 

should be removed. This step is executed completely in CPU since this part of the code 

is not parallelizable. The last step which requires a huge computational cost, consists 

of adding rows to each valid potential bicluster to create a final result. Taking into 

account that the processing of every bicluster is an independent task, this part is suitable 

to be parallelized through the CUDA architecture. 

The second group of algorithms are range-querying algorithms. All represented 

GPU-based range query algorithms rely on the identical preparations stage. In this 

stage, the CPU sends compressed columns to the GPU. After that the GPU obtains the 

compressed columns, it decompresses them in parallel. Once decompressed, the bit 

vectors involved in the query are word-aligned. This alignment makes the bitwise 

operation on two bit vectors an excellent fit for the massively parallel nature of GPUs. 

GPU range query execution strategies: column-oriented access (COA), row-oriented 

access (ROA), hybrid, and ideal hybrid access approaches. These approaches are 

analogous to structure-of-arrays, array-of-structures, and a blend thereof. Structure-of-

arrays and array-of-structures approaches have been used successfully to accelerate 

scientific simulations on GPUs, but differ in the how data is organized and accessed 

which can impact GPU efficiency. 

Results and Performance evaluation 

Comparison of the performance of the gBiBit implementation with the BiBit 

original algorithm and the CUBiBit version has been presented for biclustering. Also, 

another version of BiBit, called ParBiBit is considered for this experimentation. 

The measured execution times takes into account only the results of generation 

process, so the time needed for their visualization and storage is not considered. The 

four versions of the algorithm receive the same input parameters: a dataset, the 

minimum number of rows required (mnr) and the minimum number of columns 
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required (mnc) for the final biclusters. These two last parameters have been set to 2, 

being the least restrictive value in order to obtain the highest number of results and, 

consequently, to test the performance with the maximum number of resources required. 

Figure 1 demonstrates the evolution of the execution times in seconds registered for 

BiBit, ParBiBit, CUBiBit and gBiBit, the last two executed with a single GPU device. 

For more details, all the execution times have been collected in Table 1. 

 

Figure 1. - Execution time in seconds for square synthetic datasets sizes  

from 200 × 200 to 10 000 × 10 000. 

 

Figure 1 also shows that gBiBit presents the best execution times. The greatest 

difference is registered for the dataset with size 200 × 200. In this case, gBiBit is near 

1900 times faster than CUBiBit, while the smallest difference is registered for the 

4000 × 4000 dataset, for which gBiBit is 14 times faster than CUBiBit. 

Table 1. Execution times in seconds for square synthetic datasets of various sizes. 

Dataset BiBit, s ParBiBit, s CUBiBit, s gBiBit, s 

200 × 200 0.219 0.21 13.16 0.007 

400 × 400 1.362 0.83 11.10 0.011 

600 × 600 3.754 1.84 8.28 0.020 

800 × 800 9.664 3.55 7.01 0.038 

1000 × 1000 15.807 6.11 15.33 0.066 

2000 × 2000 n/a n/a 19.41 0.446 

4000 × 4000 n/a n/a 52.37 3.637 

6000 × 6000 n/a n/a n/a 11.475 

8000 × 8000 n/a n/a n/a 27.203 

10000 × 10000 n/a n/a n/a 53.555 

Also, according to the Table 1 the gBiBit algorithm outperform ParBiBit 

algorithm by 17.66 times in average. The comparison of the performance of the COA 

and ROA implementation with the CPU algorithms with different number of cores has 
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been represented for data-quering. Also, Hybrid and Ideal-Hybrid versions are 

considered for this experimentation. 

Results are shown for all GPU tests compared to the iterative CPU method, 

organized by data set (Figure 2). Iterative CPU range query performance typically 

improves with additional cores for every data set. The only exception is the BPA data 

set when transitioning from 8 to 16 cores. The GPU methods outperform the iterative 

CPU method in 96.2% of these tests with an average speedup of 14.50×. The GPU 

methods are capable of providing a maximum speedup of 54.14× over the iterative 

CPU method. On the average, the GPU methods provide 1.45×, 20.24×, 11.45×, 

17.36×, 18.76×, and 17.72× speedup for the KDD, linkage, BPA, Zipf (skew = 0), Zipf 

(skew = 1), and Zipf (skew = 2) data sets, accordingly. 

The GPU methods outperform the CPU reduction method (using 16 cores) in all 

tests. On the average, the GPU methods provide 2.16× speedup over the reduction CPU 

method when using 16 cores. 

 

Figure 2 - Speedups (vertical axes) for the GPU methods compared to the iterative CPU 

method (using the number of cores shown in the legend) grouped by the GPU range query method 

(horizontal axes).  

The Zipf data set skews are appended (e.g., Zipf0 is the Zipf data set with a skew 

of 0). The horizontal dashed line indicates a speedup of 1×. All plots share the same 

legend. 
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Conclusion 

GPU technology and CUDA architecture are one of the most used options to 

adapt machine learning techniques to large and complex datasets. In the case of 

techniques, that are presented in this paper, they have been implemented to use GPU 

resources in parallel have improved their computational performance. However, this 

fact does not guarantee that these new algorithms can handle the processing of large 

datasets. There are some important issues that should be taken into account, like the 

data transfers between CPU and GPU memory or the balanced distribution of workload 

between the GPU resources. Nonetheless wide use of graphical processing units for 

general computing is limited to its API and programming languages, that may be used 

with. 
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