Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/75667
Title: Hypervelocity collision and water-rock interaction in space preserved in the Chelyabinsk ordinary chondrite
Authors: Nakamura, E.
Kunihiro, T.
Ota, T.
Sakaguchi, C.
Tanaka, R.
Kitagawa, H.
Kobayashi, K.
Yamanaka, M.
Shimaki, Y.
Bebout, G. E.
Miura, H.
Yamamoto, T.
Malkovets, V.
Grokhovsky, V.
Koroleva, O.
Litasov, K.
Issue Date: 2019
Publisher: Japan Academy
Citation: Hypervelocity collision and water-rock interaction in space preserved in the Chelyabinsk ordinary chondrite / E. Nakamura, T. Kunihiro, T. Ota et al. // Proceedings of the Japan Academy Series B: Physical and Biological Sciences. — 2019. — Vol. 95. — Iss. 4. — P. 165-177.
Abstract: A comprehensive geochemical study of the Chelyabinsk meteorite reveals further details regarding its history of impact-related fragmentation and melting, and later aqueous alteration, during its transit toward Earth. We support an 930Ma age obtained by Ar-Ar method (Beard et al., 2014) for the impact-related melting, based on Rb-Sr isotope analyses of a melt domain. An irregularly shaped olivine with a distinct O isotope composition in a melt domain appears to be a fragment of a silicate-rich impactor. Hydrogen and Li concentrations and isotopic compositions, textures of Fe oxyhydroxides, and the presence of organic materials located in fractures, are together consistent with aqueous alteration, and this alteration could have pre-dated interaction with the Earth's atmosphere. As one model, we suggest that hypervelocity capture of the impact-related debris by a comet nucleus could have led to shock-wave-induced supercritical aqueous fluids dissolving the silicate, metallic, and organic matter, with later ice sublimation yielding a rocky rubble pile sampled by the meteorite. © 2019 The Japan Academy.
Keywords: ASTEROID
CHRONOLOGY
COMET
GEOCHEMISTRY
IMPACT MELTING
ORDINARY CHONDRITE
WATER
ASTRONOMY
CHEMISTRY
EARTH (PLANET)
EVOLUTION, PLANETARY
METEOROIDS
WATER
URI: http://hdl.handle.net/10995/75667
metadata.dc.rights: info:eu-repo/semantics/openAccess
SCOPUS ID: 85064721551
WOS ID: WOS:000470804000002
PURE ID: 9298868
ISSN: 0386-2208
DOI: 10.2183/pjab.95.013
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File SizeFormat 
10.2183-pjab.95.013.pdf5,37 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.