Please use this identifier to cite or link to this item: http://hdl.handle.net/10995/50896
Title: Molecular dynamics simulation of UO 2 nanocrystals surface
Authors: Boyarchenkov, A. S.
Potashnikov, S. I.
Nekrasov, K. A.
Kupryazhkin, A. Ya.
Issue Date: 2012
Citation: Molecular dynamics simulation of UO 2 nanocrystals surface / A. S. Boyarchenkov, S. I. Potashnikov, K. A. Nekrasov, A. Ya. Kupryazhkin // Journal of Nuclear Materials. — 2012. — Vol. 421. — № 1-3. — P. 1-8.
Abstract: In this article we investigated surface of nanocrystals (NCs) of uranium dioxide (UO 2) using molecular dynamics (MD) under isolated (non-periodic) boundary conditions in the approximation of rigid ions and pair potentials (RIPI). It is shown that a cubic shape of NCs is metastable and equilibrium is reached in the process of structural relaxation to the octahedral shape during long simulations of 1000 ns (200 million MD steps), which increase with the size of NC. We measured the size dependences of the lattice parameter and the surface energy density of cubic and octahedral NCs with volumes up to 1000 nm 3 (50 000 particles) at temperatures of 2200 K and 2300 K. For the surfaces {1 0 0} and {1 1 1} we obtained the energy densities σ 100 = 1.60 ± 0.02 J/m 2, σ 111 = 1.14 ± 0.03 J/m 2 and surface tension constant γ 111 = 0.841 ± 0.008 J/m 2. The resulting ratio of σ 100/σ 111 = 1.41 ± 0.04 within the error coincides with the experimental value of 1.42 ± 0.05 measured for microscopic cavities in UO 2 monocrystals. © 2011 Elsevier B.V. All rights reserved.
URI: http://hdl.handle.net/10995/50896
metadata.dc.rights: info:eu-repo/semantics/restrictedAccess
SCOPUS ID: 82655165643
WOS ID: WOS:000300924600001
PURE ID: 1092832
ISSN: 0022-3115
DOI: 10.1016/j.jnucmat.2011.11.030
Appears in Collections:Научные публикации, проиндексированные в SCOPUS и WoS CC

Files in This Item:
File Description SizeFormat 
10.1016j.jnucmat.2011.11.030_2012.pdf814,85 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.