Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://hdl.handle.net/10995/26832
Название: Carnot cycle at finite power: Attainability of maximal efficiency
Авторы: Allahverdyan, A. E.
Hovhannisyan, K. V.
Melkikh, A. V.
Gevorkian, S. G.
Дата публикации: 2013
Библиографическое описание: Carnot cycle at finite power: Attainability of maximal efficiency / A. E. Allahverdyan, K. V. Hovhannisyan, A. V. Melkikh [et al.] // Physical Review Letters. — 2013. — Vol. 111. — № 5.
Аннотация: We want to understand whether and to what extent the maximal (Carnot) efficiency for heat engines can be reached at a finite power. To this end we generalize the Carnot cycle so that it is not restricted to slow processes. We show that for realistic (i.e., not purposefully designed) engine-bath interactions, the work-optimal engine performing the generalized cycle close to the maximal efficiency has a long cycle time and hence vanishing power. This aspect is shown to relate to the theory of computational complexity. A physical manifestation of the same effect is Levinthal's paradox in the protein folding problem. The resolution of this paradox for realistic proteins allows to construct engines that can extract at a finite power 40% of the maximally possible work reaching 90% of the maximal efficiency. For purposefully designed engine-bath interactions, the Carnot efficiency is achievable at a large power. © 2013 American Physical Society.
Ключевые слова: CARNOT EFFICIENCY
LARGE POWER
LONG CYCLE TIME
PROTEIN FOLDING PROBLEM
VANISHING POWER
CARNOT CYCLE
ENGINES
THERMAL CYCLING
EFFICIENCY
URI: http://hdl.handle.net/10995/26832
DOI: 10.1103/PhysRevLett.111.050601
SCOPUS: http://www.scopus.com/inward/record.url?eid=2-s2.0-84881534644&partnerID=40&md5=6513f67fd2414a539826dcc02fafea69
Располагается в коллекциях:Научные публикации, проиндексированные в SCOPUS и WoS

Файлы этого ресурса:
Файл Описание РазмерФормат 
scopus-2013-0065.pdf118,23 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.