Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://hdl.handle.net/10995/18405
Название: Метафизика Парменида с точки зрения двузначной алгебры формальной аксиологии и метафизические основания метатеоремы К. Геделя о недоказуемости непротиворечивости формальной арифметики в непротиворечивой формальной арифметике
Другие названия: The metaphysics of Parmenides from the viewpoint of the two-valued algebra of formal axiology, and metaphysical foundations of K. Go"del's meta-theorem about the improvability of consistency of the formal arithmetic within the formal arithmetic
Авторы: Лобовиков, В. О.
Lobovikov, V. O.
Дата публикации: 2011
Библиографическое описание: Лобовиков В. О. Метафизика Парменида с точки зрения двузначной алгебры формальной аксиологии и метафизические основания метатеоремы К. Геделя о недоказуемости непротиворечивости формальной арифметики в непротиворечивой формальной арифметике / В. О. Лобовиков // Известия Уральского государственного университета. Сер. 3, Общественные науки. — 2011. — N 3 (94). — С. 13-27.
Аннотация: Статья посвящена построению и изучению дискретных математических моделей: 1) формально-аксиологического аспекта метафизики элеатов; 2) формально-аксиологического аспекта философских оснований математики. В рамках двузначной алгебры формальной аксиологии, во-первых, точно формулируются и обосновываются (как уравнения этой алгебры) знаменитые положения элеатов; во-вторых, точно формулируется и обосновывается формально-аксиологический закон невозможности доказательства непротиворечивости формальной арифметики в (точно той же самой) формальной арифметике. Факт такой недоказуемости строго обосновал К. Гедель во второй теореме о неполноте. Научная новизна настоящей статьи - строгое обоснование положительной ценности такой недоказуемости.
The paper is devoted to constructing and study of discrete mathematical simulations of: 1) formal-axiological aspect of metaphysics of the Eleates; 2) formal-axiological aspect of philosophical foundations of mathematics. Within the framework of the two-valued algebra of formal axiology; at first, the Eleates' famous statements are precisely formulated and substantiated as equations of that algebra; at second, the author submits a hitherto unknown precise formulation and demonstration of a formal-axiological law of impossibility of proof of consistency of the formal arithmetic within (by means of) the formal arithmetic itself. The fact of such proof impossibility was established by K. Go"del's second incompleteness theorem. The present paper's scientific novelty is made up by a precise alagebraic substantiation of the necessarily positive value («analytical goodness») of the mentioned improvability.
Ключевые слова: БЫТИЕ
НЕНЕПРОТИВОРЕЧИВОСТЬ
ДОКАЗАТЕЛЬСТВО
ПОЛНОТА
НЕГЕДЕЛЬ
АРИФМЕТИКА
ФОРМАЛЬНАЯ
АКСИОЛОГИЯ
BEING
NON-CONSISTENCY
INCONSISTENCY
PROOF
COMPLETENESS
INGo"DEL
ARITHMETIC
FORMAL
AXIOLOGY
URI: http://hdl.handle.net/10995/18405
Идентификатор РИНЦ: http://elibrary.ru/item.asp?id=16816371
Источники: Известия Уральского государственного университета. Сер. 3, Общественные науки. 2011. N 3 (94)
Располагается в коллекциях:Известия Уральского федерального университета. Серия 3, Общественные науки

Файлы этого ресурса:
Файл Описание РазмерФормат 
iuro-2011-94-02.pdf526,5 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.