Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/132383
Название: | Systems monitoring based on robust estimation of stochastic time series models |
Авторы: | Tyrsin, A. N. Golovanov, O. A. |
Дата публикации: | 2022 |
Издатель: | Institute of Physics |
Библиографическое описание: | Tyrsin, AN & Golovanov, OA 2022, 'Systems monitoring based on robust estimation of stochastic time series models', Journal of Physics: Conference Series, Том. 2388, № 1, стр. 012074. https://doi.org/10.1088/1742-6596/2388/1/012074 Tyrsin, A. N., & Golovanov, O. A. (2022). Systems monitoring based on robust estimation of stochastic time series models. Journal of Physics: Conference Series, 2388(1), 012074. https://doi.org/10.1088/1742-6596/2388/1/012074 |
Аннотация: | The problem of system monitoring under conditions of stochastic data heterogeneity based on time series models is considered. The stability of monitoring is proposed to be ensured through the use of convex-concave loss functions. An algorithm for estimating the variance of the main error distribution is proposed. This allows using robust procedures for estimating the parameters of stochastic time series models without a priori information about the variance value of the main error distribution. Using the Monte Carlo statistical test method, the estimates of the proposed robust methods are compared with the known methods of least squares, least modules, and Huber. It is shown that the introduced robust estimates of the parameters of stochastic models of time series win in accuracy and allow increasing the reliability of monitoring the state of systems. © Published under licence by IOP Publishing Ltd. |
Ключевые слова: | LEAST SQUARES APPROXIMATIONS MONTE CARLO METHODS PARAMETER ESTIMATION STATISTICAL TESTS STOCHASTIC SYSTEMS TIME SERIES CONDITION DATA HETEROGENEITY ERROR DISTRIBUTIONS LOSS FUNCTIONS ROBUST ESTIMATION ROBUST PROCEDURES STOCHASTIC DATA STOCHASTIC TIME SERIES MODELS SYSTEM MONITORING TIMES SERIES MODELS STOCHASTIC MODELS |
URI: | http://elar.urfu.ru/handle/10995/132383 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Конференция/семинар: | 6 October 2022 through 9 October 2022 |
Дата конференции/семинара: | 4th International Conference on Applied Physics, Information Technologies and Engineering 2022, APITECH 2022 |
Идентификатор SCOPUS: | 85145169031 |
Идентификатор PURE: | b447ff0a-0224-46d5-91f2-8f9f4ceea194 33229395 |
ISSN: | 1742-6588 |
DOI: | 10.1088/1742-6596/2388/1/012074 |
Сведения о поддержке: | Russian Foundation for Basic Research, РФФИ, (20-41-660008) The study was carried out with the financial support of the RFBR grant, project No. 20-41-660008. |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85145169031.pdf | 1,22 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.