Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/132322
Название: Numerical methods for stochastic sensitivity analysis of 2D chaotic attractors
Авторы: Perevalova, T.
Satov, A.
Дата публикации: 2022
Издатель: American Institute of Physics Inc.
Библиографическое описание: Perevalova, T & Satov, A 2022, Numerical methods for stochastic sensitivity analysis of 2D chaotic attractors. в MD Todorov (ред.), Application of Mathematics in Technical and Natural Sciences - 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021., 100009, AIP Conference Proceedings, Том. 2522, American Institute of Physics Inc., 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021, Albena, Болгария, 24/06/2021. https://doi.org/10.1063/5.0101205
Perevalova, T., & Satov, A. (2022). Numerical methods for stochastic sensitivity analysis of 2D chaotic attractors. в M. D. Todorov (Ред.), Application of Mathematics in Technical and Natural Sciences - 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021 [100009] (AIP Conference Proceedings; Том 2522). American Institute of Physics Inc.. https://doi.org/10.1063/5.0101205
Аннотация: The paper presents constructive algorithms for finding the outer boundaries of chaotic attractors, based on a geometric selection of points of critical lines belonging only to the outer boundary. In the theory of dynamical discrete-time systems, critical lines play a key role. These lines facilitate the study of the dynamic properties of noninvertible maps and to describe the boundaries of a chaotic attractor. The previously constructed stochastic sensitivity function for chaotic attractors is based on critical lines and lets us estimate the dispersion of random states around the chaotic attractor. However, the technical problem is complicated by the fact that the critical lines describe not only the external boundaries, but also structures inside the chaotic attractor. Our algorithms are tested for complex non-convex forms of chaotic attractors. Based on the algorithms, we solve the problem of finding confidence domains around chaotic attractors of stochastic systems. © 2022 Author(s).
URI: http://elar.urfu.ru/handle/10995/132322
Условия доступа: info:eu-repo/semantics/openAccess
Конференция/семинар: 24 June 2021 through 29 June 2021
Дата конференции/семинара: 13th International Hybrid Conference for Promoting the Application of Mathematics in Technical and Natural Sciences, AMiTaNS 2021
Идентификатор SCOPUS: 85140223340
Идентификатор PURE: c15d75a6-4975-43a5-844e-e67a3a90e3a0
31055808
ISSN: 0094-243X
ISBN: 978-073544361-7
DOI: 10.1063/5.0101205
Сведения о поддержке: Russian Science Foundation, RSF, (N 21-11-00062)
The work was supported by Russian Science Foundation (N 21-11-00062).
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85140223340.pdf25,85 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.