Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/131574
Название: Mathematical Modeling of the Solid–Liquid Interface Propagation by the Boundary Integral Method with Nonlinear Liquidus Equation and Atomic Kinetics
Авторы: Titova, E. A.
Alexandrov, D. V.
Toropova, L. V.
Дата публикации: 2022
Издатель: MDPI
Библиографическое описание: Titova, EA, Alexandrov, DV & Toropova, LV 2022, 'Mathematical Modeling of the Solid–Liquid Interface Propagation by the Boundary Integral Method with Nonlinear Liquidus Equation and Atomic Kinetics', Crystals, Том. 12, № 11, стр. 1657. https://doi.org/10.3390/cryst12111657
Titova, E. A., Alexandrov, D. V., & Toropova, L. V. (2022). Mathematical Modeling of the Solid–Liquid Interface Propagation by the Boundary Integral Method with Nonlinear Liquidus Equation and Atomic Kinetics. Crystals, 12(11), 1657. https://doi.org/10.3390/cryst12111657
Аннотация: In this paper, we derive the boundary integral equation (BIE), a single integrodifferential equation governing the evolutionary behavior of the interface function, paying special attention to the nonlinear liquidus equation and atomic kinetics. As a result, the BIE is found for a thermodiffusion problem of binary melt crystallization with convection. Analyzing this equation coupled with the selection criterion for a stationary dendritic growth in the form of a parabolic cylinder, we show that nonlinear effects stemming from the liquidus equation and atomic kinetics play a decisive role. Namely, the dendrite tip velocity and diameter, respectively, become greater and lower with the increasing deviation of the liquidus equation from a linear form. In addition, the dendrite tip velocity can substantially change with variations in the power exponent of the atomic kinetics. In general, the theory under consideration describes the evolution of a curvilinear crystallization front, as well as the growth of solid phase perturbations and patterns in undercooled binary melts at local equilibrium conditions (for low and moderate Péclet numbers). In addition, our theory, combined with the unsteady selection criterion, determines the non-stationary growth rate of dendritic crystals and the diameter of their vertices. © 2022 by the authors.
Ключевые слова: BOUNDARY INTEGRAL EQUATION
CURVED SOLID–LIQUID INTERFACE
PHASE TRANSITIONS
UNDERCOOLED MELT
URI: http://elar.urfu.ru/handle/10995/131574
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
Идентификатор SCOPUS: 85149462293
Идентификатор WOS: 000895256400001
Идентификатор PURE: 32894539
ea3cf751-f5e8-4456-9011-e0ee2eee9c13
ISSN: 2073-4352
DOI: 10.3390/cryst12111657
Сведения о поддержке: Ministry of Education and Science of the Russian Federation, Minobrnauka, (075-02-2022-877)
Russian Science Foundation, RSF, (21-71-00044)
The present research work consists of theoretical and computational parts, which were supported by different financial sources. E.A.T. acknowledges the Russian Science Foundation (Project No. 21-71-00044) for the development of the boundary integral method. L.V.T. is grateful to the financial support from the Ministry of Science and Higher Education of the Russian Federation (Project 075-02-2022-877 for the development of the regional scientific and educational mathematical center “Ural Mathematical Center”) for the development of the selection criteria, computer simulations, and numerical examples.
Карточка проекта РНФ: 21-71-00044
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85149462293.pdf501,96 kBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons