Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130947
Название: | Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique |
Авторы: | Kolinichenko, A. Bashkirtseva, I. Ryashko, L. |
Дата публикации: | 2023 |
Издатель: | MDPI |
Библиографическое описание: | Kolinichenko, A, Bashkirtseva, I & Ryashko, L 2023, 'Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique', Mathematics, Том. 11, № 2, 451. https://doi.org/10.3390/math11020451 Kolinichenko, A., Bashkirtseva, I., & Ryashko, L. (2023). Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique. Mathematics, 11(2), [451]. https://doi.org/10.3390/math11020451 |
Аннотация: | The problem with the analysis of noise-induced transitions between patterns in distributed stochastic systems is considered. As a key model, we use the spatially extended dynamical “phytoplankton-herbivore” system with diffusion. We perform the parametric bifurcation analysis of this model and determine the Turing instability zone, where non-homogeneous patterns are generated by diffusion. The multistability of this deterministic model with the coexistence of several waveform pattern–attractors is found. We study how noise affects these non-homogeneous patterns and estimate the dispersion of random states using a new technique based on stochastic sensitivity function (SSF) analysis and the confidence domain method. To investigate the preferences in noise-induced transitions between patterns, we analyze and compare the results of this theoretical approach with the statistics extracted from the direct numerical simulation. © 2023 by the authors. |
Ключевые слова: | DIFFUSION MODEL NOISE-INDUCED TRANSITIONS PATTERNS RANDOM DISTURBANCES SELF-ORGANIZATION STOCHASTIC SENSITIVITY |
URI: | http://elar.urfu.ru/handle/10995/130947 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85146741941 |
Идентификатор WOS: | 000918737200001 |
Идентификатор PURE: | 33968995 |
ISSN: | 2227-7390 |
DOI: | 10.3390/math11020451 |
Сведения о поддержке: | 075-02-2022-877; Ministry of Education and Science of the Russian Federation, Minobrnauka; Russian Science Foundation, RSF: N 21-11-00062 The work of A.K. on the bifurcation analysis of the deterministic diffusion population model is supported by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2022-877). The work of A.K., I.B., and L.R. on the research and development of the stochastic sensitivity theory of pattern–attractors and their application to the study of noise-induced effects was supported by the Russian Science Foundation (N 21-11-00062). |
Карточка проекта РНФ: | 21-11-00062 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85146741941.pdf | 2,44 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons