Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130947
Название: Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique
Авторы: Kolinichenko, A.
Bashkirtseva, I.
Ryashko, L.
Дата публикации: 2023
Издатель: MDPI
Библиографическое описание: Kolinichenko, A, Bashkirtseva, I & Ryashko, L 2023, 'Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique', Mathematics, Том. 11, № 2, 451. https://doi.org/10.3390/math11020451
Kolinichenko, A., Bashkirtseva, I., & Ryashko, L. (2023). Self-Organization in Randomly Forced Diffusion Systems: A Stochastic Sensitivity Technique. Mathematics, 11(2), [451]. https://doi.org/10.3390/math11020451
Аннотация: The problem with the analysis of noise-induced transitions between patterns in distributed stochastic systems is considered. As a key model, we use the spatially extended dynamical “phytoplankton-herbivore” system with diffusion. We perform the parametric bifurcation analysis of this model and determine the Turing instability zone, where non-homogeneous patterns are generated by diffusion. The multistability of this deterministic model with the coexistence of several waveform pattern–attractors is found. We study how noise affects these non-homogeneous patterns and estimate the dispersion of random states using a new technique based on stochastic sensitivity function (SSF) analysis and the confidence domain method. To investigate the preferences in noise-induced transitions between patterns, we analyze and compare the results of this theoretical approach with the statistics extracted from the direct numerical simulation. © 2023 by the authors.
Ключевые слова: DIFFUSION MODEL
NOISE-INDUCED TRANSITIONS
PATTERNS
RANDOM DISTURBANCES
SELF-ORGANIZATION
STOCHASTIC SENSITIVITY
URI: http://elar.urfu.ru/handle/10995/130947
Условия доступа: info:eu-repo/semantics/openAccess
cc-by
Текст лицензии: https://creativecommons.org/licenses/by/4.0/
Идентификатор SCOPUS: 85146741941
Идентификатор WOS: 000918737200001
Идентификатор PURE: 33968995
ISSN: 2227-7390
DOI: 10.3390/math11020451
Сведения о поддержке: 075-02-2022-877; Ministry of Education and Science of the Russian Federation, Minobrnauka; Russian Science Foundation, RSF: N 21-11-00062
The work of A.K. on the bifurcation analysis of the deterministic diffusion population model is supported by the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center project No. 075-02-2022-877). The work of A.K., I.B., and L.R. on the research and development of the stochastic sensitivity theory of pattern–attractors and their application to the study of noise-induced effects was supported by the Russian Science Foundation (N 21-11-00062).
Карточка проекта РНФ: 21-11-00062
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85146741941.pdf2,44 MBAdobe PDFПросмотреть/Открыть


Лицензия на ресурс: Лицензия Creative Commons Creative Commons