Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130898
Название: | Non-Markovian Persistent Random Walk Model for Intracellular Transport |
Авторы: | Korabel, N. Al, Shamsi, H. Ivanov, A. O. Fedotov, S. |
Дата публикации: | 2023 |
Издатель: | Multidisciplinary Digital Publishing Institute (MDPI) |
Библиографическое описание: | Korabel, N, Al Shamsi, H, Ivanov, A & Fedotov, S 2023, 'Non-Markovian Persistent Random Walk Model for Intracellular Transport', Fractal and Fractional, Том. 7, № 10, 758. https://doi.org/10.3390/fractalfract7100758 Korabel, N., Al Shamsi, H., Ivanov, A., & Fedotov, S. (2023). Non-Markovian Persistent Random Walk Model for Intracellular Transport. Fractal and Fractional, 7(10), [758]. https://doi.org/10.3390/fractalfract7100758 |
Аннотация: | Transport of vesicles and organelles inside cells consists of constant-speed bidirectional movement along cytoskeletal filaments interspersed by periods of idling. This transport shows many features of anomalous diffusion. In this paper, we develop a non-Markovian persistent random walk model for intracellular transport that incorporates the removal rate of organelles. The model consists of two active states with different speeds and one resting state. The organelle transitions between states with switching rates that depend on the residence time the organelle spends in each state. The mesoscopic master equations that describe the average densities of intracellular transport in each of the three states are the main results of the paper. We also derive ordinary differential equations for the dynamics for the first and second moments of the organelles’ position along the cell. Furthermore, we analyse models with power-law distributed random times, which reveal the prevalence of the Mittag-Leffler resting state and its contribution to subdiffusive and superdiffusive behaviour. Finally, we demonstrate a non-Markovian non-additivity effect when the switching rates and transport characteristics depend on the rate of organelles removal. The analytical calculations are in good agreement with numerical Monte Carlo simulations. Our results shed light on the dynamics of intracellular transport and emphasise the effects of rest times on the persistence of random walks in complex biological systems. © 2023 by the authors. |
Ключевые слова: | INTEGRO-DIFFERENTIAL EQUATIONS INTRACELLULAR TRANSPORT SUBDIFFUSION SUPERDIFFUSION |
URI: | http://elar.urfu.ru/handle/10995/130898 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор SCOPUS: | 85175143847 |
Идентификатор WOS: | 001095196400001 |
Идентификатор PURE: | 47844111 |
ISSN: | 2504-3110 |
DOI: | 10.3390/fractalfract7100758 |
Сведения о поддержке: | 075-02-2023-935; Engineering and Physical Sciences Research Council, EPSRC: EP/V008641/1 N.K. and S.F. acknowledge financial support from EPSRC Grant No. EP/V008641/1. The research was partly supported by the Ural Mathematical Center, Project No. 075-02-2023-935 (AOI). |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85175143847.pdf | 776,4 kB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons