Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://elar.urfu.ru/handle/10995/130883
Название: | An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients |
Авторы: | Liaqat, M. I. Akgül, A. Prosviryakov, E. Y. |
Дата публикации: | 2023 |
Издатель: | Samara State Technical University |
Библиографическое описание: | Liaqat, MI, Akgül, A & Prosviryakov, EY 2023, 'An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients', Вестник Самарского государственного технического университета. Серия: Физико-математические науки, Том. 27, № 2, стр. 214-240. https://doi.org/10.14498/vsgtu2009 Liaqat, M. I., Akgül, A., & Prosviryakov, E. Y. (2023). An efficient method for the analytical study of linear and nonlinear time-fractional partial differential equations with variable coefficients. Вестник Самарского государственного технического университета. Серия: Физико-математические науки, 27(2), 214-240. https://doi.org/10.14498/vsgtu2009 |
Аннотация: | The residual power series method is effective for obtaining approximate analytical solutions to fractional-order differential equations. This method, however, requires the derivative to compute the coefficients of terms in a series solution. Other well-known methods, such as the homotopy perturbation, the Adomian decomposition, and the variational iteration methods, need integration. We are all aware of how difficult it is to calculate the fractional derivative and integration of a function. As a result, the use of the methods mentioned above is somewhat constrained. In this research work, approximate and exact analytical solutions to time-fractional partial differential equations with variable coefficients are obtained using the Laplace residual power series method in the sense of the Gerasimov-Caputo fractional derivative. This method helped us overcome the limitations of the various methods. The Laplace residual power series method performs exceptionally well in computing the coefficients of terms in a series solution by applying the straightforward limit principle at infinity, and it is also more effective than various series solution methods due to the avoidance of Adomian and He polynomials to solve nonlinear problems. The relative, recurrence, and absolute errors of the three problems are investigated in order to evaluate the validity of our method. The results show that the proposed method can be a suitable alternative to the various series solution methods when solving time-fractional partial differential equations. © 2023 Samara State Technical University. All rights reserved. |
Ключевые слова: | GERASIMOV-CAPUTO DERIVATIVE LAPLACE TRANSFORM PARTIAL DIFFERENTIAL EQUATION RESIDUAL POWER SERIES METHOD |
URI: | http://elar.urfu.ru/handle/10995/130883 |
Условия доступа: | info:eu-repo/semantics/openAccess cc-by |
Текст лицензии: | https://creativecommons.org/licenses/by/4.0/ |
Идентификатор РИНЦ: | 54912902 |
Идентификатор SCOPUS: | 85174953852 |
Идентификатор WOS: | 001100245300002 |
Идентификатор PURE: | 47595658 |
ISSN: | 1991-8615 |
DOI: | 10.14498/vsgtu2009 |
Располагается в коллекциях: | Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2-s2.0-85174953852.pdf | 1,84 MB | Adobe PDF | Просмотреть/Открыть |
Лицензия на ресурс: Лицензия Creative Commons