Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/130374
Название: Phase evolution and strong temperature-dependent electrostrictive effect in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions
Авторы: Huang, Y.
Zhang, L.
Jing, R.
Shi, W.
Alikin, D.
Shur, V.
Wei, X.
Jin, L.
Дата публикации: 2023
Издатель: John Wiley and Sons Inc
Библиографическое описание: Huang, Y, Zhang, L, Jing, R, Shi, W, Alikin, D, Shur, V, Wei, X & Jin, L 2023, 'Phase evolution and strong temperature-dependent electrostrictive effect in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions', Journal of the American Ceramic Society, Том. 106, № 8, стр. 4709-4722. https://doi.org/10.1111/jace.19104, https://doi.org/10.1111/jace.v106.8
Huang, Y., Zhang, L., Jing, R., Shi, W., Alikin, D., Shur, V., Wei, X., & Jin, L. (2023). Phase evolution and strong temperature-dependent electrostrictive effect in (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 solid solutions. Journal of the American Ceramic Society, 106(8), 4709-4722. https://doi.org/10.1111/jace.19104, https://doi.org/10.1111/jace.v106.8
Аннотация: (1−x)Pb(Mg1/3Nb2/3)-xPbTiO3 (PMN-xPT) ceramics with x ranging from 0.1 to 0.3 were synthesized by solid-state reaction method. X-ray diffraction, dielectric and ferroelectric property characterizations were systematically investigated. As x rises, the PMN-xPT transitions from a cubic to a rhombohedral phase, resulting in an enhancement in ferroelectricity. Our findings show that the electrostrain and longitudinal electrostrictive coefficient Q33 both increase and then decrease within a critical region located between the depolarization temperature TFR and Tm (corresponding to the maximum permittivity), demonstrating strong temperature-dependent characteristics. In x = 0.2, the maximum Q33 of 0.0361 m4/C2 is obtained, and a phase diagram of studied system is built. Our findings not only shed light on the phase evolution in this system but also reveal a strong temperature-dependent electrostrictive effect that can be used to improve electrostrains in PMN-based solid solutions if the critical region can be regulated to a suitable temperature region using engineering strategies. © 2023 The American Ceramic Society.
Ключевые слова: ELECTROSTRICTION
ELECTROSTRICTIVE COEFFICIENT
PHASE EVOLUTION
PMN-XPT
RELAXOR FERROELECTRIC
ELECTROSTRICTION
FERROELECTRIC MATERIALS
FERROELECTRICITY
SOLID STATE REACTIONS
(1−X)PB(MG1/3NB2/3)-XPBTIO3
CRITICAL REGION
ELECTROSTRAIN
ELECTROSTRICTIVE COEFFICIENTS
ELECTROSTRICTIVE EFFECTS
PHASE EVOLUTIONS
RELAXOR FERROELECTRIC
SOLID STATE REACTION METHOD
SYNTHESISED
TEMPERATURE DEPENDENT
SOLID SOLUTIONS
URI: http://elar.urfu.ru/handle/10995/130374
Условия доступа: info:eu-repo/semantics/openAccess
Идентификатор SCOPUS: 85152017180
Идентификатор WOS: 000961623800001
Идентификатор PURE: 40054522
ISSN: 0002-7820
DOI: 10.1111/jace.19104
Сведения о поддержке: National Natural Science Foundation of China, NSFC: 52172127, 52261135548; Xi’an Jiaotong University, XJTU; Russian Science Foundation, RSF: 23‐42‐00116, 2968; Ministry of Science and Higher Education of the Russian Federation: 075‐15‐2021‐677; Key Research and Development Projects of Shaanxi Province: 2022KWZ‐22
This work was financially supported by the National Natural Science Foundation of China (grant number: 52172127 and 52261135548), the Key Research and Development Program of Shaanxi (program number: 2022KWZ‐22). The research was made possible by Russian Science Foundation (project number: 23‐42‐00116). The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University (reg. number: 2968), which is supported by the Ministry of Science and Higher Education RF (project number: 075‐15‐2021‐677), was used. The SEM work was done at International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China.
This work was financially supported by the National Natural Science Foundation of China (grant number: 52172127 and 52261135548), the Key Research and Development Program of Shaanxi (program number: 2022KWZ-22). The research was made possible by Russian Science Foundation (project number: 23-42-00116). The equipment of the Ural Center for Shared Use “Modern nanotechnology” Ural Federal University (reg. number: 2968), which is supported by the Ministry of Science and Higher Education RF (project number: 075-15-2021-677), was used. The SEM work was done at International Center for Dielectric Research (ICDR), Xi'an Jiaotong University, Xi'an, China.
Карточка проекта РНФ: 23-42-00116
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85152017180.pdf6,8 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.