Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://elar.urfu.ru/handle/10995/111619
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHe, Y.en
dc.contributor.authorAdler, P.en
dc.contributor.authorSchneider, S.en
dc.contributor.authorSoldatov, I.en
dc.contributor.authorMu, Q.en
dc.contributor.authorBorrmann, H.en
dc.contributor.authorSchnelle, W.en
dc.contributor.authorSchaefer, R.en
dc.contributor.authorRellinghaus, B.en
dc.contributor.authorFecher, G. H.en
dc.contributor.authorFelser, C.en
dc.date.accessioned2022-05-12T08:19:46Z-
dc.date.available2022-05-12T08:19:46Z-
dc.date.issued2022-
dc.identifier.citationIntrinsic Magnetic Properties of a Highly Anisotropic Rare-Earth-Free Fe2P-Based Magnet / Y. He, P. Adler, S. Schneider et al. // Advanced Functional Materials. — 2022. — Vol. 32. — Iss. 4. — 2107513.en
dc.identifier.issn1616-301X-
dc.identifier.otherAll Open Access, Hybrid Gold3
dc.identifier.urihttp://elar.urfu.ru/handle/10995/111619-
dc.description.abstractPermanent magnets are applied in many large-scale and emerging applications and are crucial components in numerous established and newly evolving technologies. Rare-earth magnets exhibit excellent hard magnetic properties; however, their applications are limited by the price and supply risk of the strategic rare-earth elements. Therefore, there is an increasing demand for inexpensive magnets without strategic elements. Here, the authors report the intrinsic highly-anisotropic magnetic properties of Co and Si co-doped single crystals (Fe1−yCoy)2P1−xSix (y ≈ 0.09). Co increases Curie temperature TC; Si doping decreases magnetocrystalline anisotropy K1 and also increases TC significantly because of the enhanced interlayer interaction. The maximum room temperature magnetocrystalline anisotropy K1 = 1.09 MJ m−3 is achieved for x = 0.22, with saturation magnetization µ0Ms = 0.96 T and TC = 506 K. The theoretical maximum energy product is one of the largest for any magnet without a rare earth or Pt. Besides its promising intrinsic magnetic properties and absence of any strategic elements, other advantages are phase stability at high temperatures and excellent corrosion resistance, which make this material most promising for permanent magnetic development that will have a positive influence in industry and daily life. © 2021 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH.en
dc.description.sponsorshipThis work was financially supported by the Joint Initiative for Research and Innovation within the Fraunhofer and Max Planck cooperation program, an Advanced Grant from the European Research Council (no. 742068) “TOPMAT,” the European Union's Horizon 2020 research and innovation programme (no. 824123) “SKYTOP,” the European Union's Horizon 2020 research and innovation programme (no. 766566) “ASPIN,” the Deutsche Forschungsgemeinschaft (project ID 258499086) “SFB 1143,” the Deutsche Forschungsgemeinschaft (project IDs FE 633/30‐1, RE 1164/6‐1, and LU 2261/2‐1) “SPP Skyrmionics”, and the DFG through the Würzburg‐Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter ct.qmat (EXC 2147, project ID 39085490).en
dc.format.mimetypeapplication/pdfen
dc.language.isoenen
dc.publisherJohn Wiley and Sons Incen1
dc.publisherWileyen
dc.rightsinfo:eu-repo/semantics/openAccessen
dc.sourceAdv. Funct. Mater.2
dc.sourceAdvanced Functional Materialsen
dc.subjectCORROSION RESISTANCEen
dc.subjectDOPING (ADDITIVES)en
dc.subjectFUNCTIONAL MATERIALSen
dc.subjectMAGNETIC PROPERTIESen
dc.subjectMAGNETOCRYSTALLINE ANISOTROPYen
dc.subjectRARE EARTHSen
dc.subjectSATURATION MAGNETIZATIONen
dc.subjectSINGLE CRYSTALSen
dc.subjectCO-DOPEDen
dc.subjectEMERGING APPLICATIONSen
dc.subjectFE 2Pen
dc.subjectHARD MAGNETIC PROPERTYen
dc.subjectLARGE-SCALE APPLICATIONSen
dc.subjectMAGNETIC PROPERTIES OF COen
dc.subjectPRICE RISKSen
dc.subjectRARE EARTH MAGNETen
dc.subjectRARE-EARTH-FREEen
dc.subjectSUPPLY RISKen
dc.subjectPERMANENT MAGNETSen
dc.titleIntrinsic Magnetic Properties of a Highly Anisotropic Rare-Earth-Free Fe2P-Based Magneten
dc.typeArticleen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeinfo:eu-repo/semantics/publishedVersionen
dc.identifier.doi10.1002/adfm.202107513-
dc.identifier.scopus85117088029-
local.contributor.employeeHe, Y., Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Adler, P., Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Schneider, S., Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), TU Dresden, Dresden, 01062, Germany, Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, Dresden, D-01069, Germany; Soldatov, I., Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, Dresden, D-01069, Germany, Institute of Natural Sciences and Mathematic, Ural Federal University, Yekaterinburg, 620075, Russian Federation; Mu, Q., Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Borrmann, H., Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Schnelle, W., Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Schaefer, R., Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, Dresden, D-01069, Germany, Institute for Materials Science, TU Dresden, Dresden, D-01062, Germany; Rellinghaus, B., Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), TU Dresden, Dresden, 01062, Germany; Fecher, G.H., Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Felser, C., Max Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germanyen
local.issue4-
local.volume32-
dc.identifier.wos000707331200001-
local.contributor.departmentMax Planck Institute for Chemical Physics of Solids, Dresden, D-01187, Germany; Dresden Center for Nanoanalysis (DCN), Center for Advancing Electronics Dresden (cfaed), TU Dresden, Dresden, 01062, Germany; Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, Dresden, D-01069, Germany; Institute of Natural Sciences and Mathematic, Ural Federal University, Yekaterinburg, 620075, Russian Federation; Institute for Materials Science, TU Dresden, Dresden, D-01062, Germanyen
local.identifier.pure29561537-
local.description.order2107513-
local.identifier.eid2-s2.0-85117088029-
local.fund.cordisH2020: 824123-
local.fund.cordisH2020: 766566-
local.identifier.wosWOS:000707331200001-
Располагается в коллекциях:Научные публикации ученых УрФУ, проиндексированные в SCOPUS и WoS CC

Файлы этого ресурса:
Файл Описание РазмерФормат 
2-s2.0-85117088029.pdf2,18 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.