Д. О. Антонов¹, Е. Г. Ковалева¹, Н. А. Чумакова²

¹Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, 620078, Россия, г. Екатеринбург, ул. Мира, 28, d.o.antonov@urfu.ru, ²Московский Государственный Университет им. М. В. Ломоносова 119991, Россия, Москва, Ленинские горы, 1, harmonic2011@yandex.ru

МЕТОД ЭПР СПИНОВЫХ МЕТОК В ИССЛЕДОВАНИИ ЛИЗОЦИМА, ИММОБИЛИЗОВАННОГО НА НАНОТРУБКАХ ГАЛЛУАЗИТА*

Ключевые слова: спиновые метки, ЭПР, лизоцим, иммобилизация, галлуазит.

Иммобилизация ферментов на твёрдом носителе имеет важное значение в их промышленном, медицинском и пищевом применении, так как позволяет снизить затраты путём повторного использования гетерогенных ферментативных катализаторов [3], а также свести к минимуму загрязнение субстрата белками. Перспективным оксидным носителем природного происхождения является галлуазит – алюмосиликат, представляющий собой полые нанотрубки размером 5-10 нм и внутренним диаметром 10-15 нм, внешняя часть нанотрубки состоит из оксида кремния, а внутренняя – из оксида алюминия [1]. Для изучения процесса иммобилизации был использован метод электронного парамагнитного резонанса (ЭПР), который позволяет наблюдать парамагнитные молекулы, находящиеся внутри непарамагнитной матрицы любой морфологии. Для этого лизоцим был ковалентно соединён со спин-меткой (стабильным нитроксильным радикалом) в положении his-15 [2].

Спектры ЭПР регистрировали на спектрометре Bruker EMX-500 Plus. Спектры моделировали с учётом как вращательной подвижности молекул белка, так и подвижности парамагнитного фрагмента относительно белковой молекулы (либрационное движение) при помощи программы ODFR4 [4], разработанной проф. А. Х. Воробьевым (Химический факультет МГУ).

Спектры см-лизоцима, иммобилизованного на всех галлуазитных нанотрубках, представляют собой сумму двух сигналов. Оба сигнала принадлежат см-лизоциму, при этом подвижность белковой глобулы в обоих случаях находится вблизи жёсткого предела для спектроскопии ЭПР Хдиапазона (коэффициент вращательной диффузии не превышает 5×10⁶ с⁻¹); различие в сигналах обусловлено, в основном, подвижностью парамагнитной метки.

Результаты моделирования сигналов ЭПР см-лизоцима на оксидных подложках приведены в таблице. Один тип иммобилизованных молекул типа I) характеризуется теми (молекулы же амплитудами либраций нитроксильного фрагмента, какие были определены для раствора см-лизоцима в буферном растворе. Второй тип молекул (молекулы типа II) имеет значительно более низкие амплитуды либраций. Наличие двух типов иммобилизованных молекул, по-видимому, можно интерпретировать следующим образом. В том случае, когда белок сорбируется спин-меченым доменом на поверхности, мы наблюдаем уменьшение подвижности метки. В случае сорбции белка на поверхности другими доменами, мы наблюдаем сохранение либрационного движения нитроксильного фрагмента. Исходя из взаимного расположения активного центра фермента и парамагнитной метки в молекуле см-лизоцима, можно заключить, что именно молекулы фермента, обращённые активным следовательно, проявляющие центром К раствору И, ферментативную активность, дают сигнал ЭПР второго типа. Таким образом, численный анализ ЭПР спектров позволяет определить долю активного фермента, иммобилизованного на пористую поверхность носителя.

Таблица

Carrier	Type of Immobilization	Type of Sygnal	Diff.Tensor ·10°	Lib X ±1°	Lib ±1°	Lib Z ±1°	Conten ±3, %
HNT	Sorption	Ι	1.0	62	34	45	32
		II	1.0	26	26	26	68
	Серия А	Ι	2.8	62	34	45	64
		II	2.8	32	32	32	36
	Серия В	Ι	7.6	62	34	45	75
		II	7.6	29	29	29	25

Результаты моделирования спин-меченого лизоцима,

иммобилизованного на поверхности галлуазитовых нанотрубок

Список литературы

- 1. *Lvov Y.*, *Wang W.*, *Zhang L et al.* // Advanced Materials. 2016. Vol. 28, № 6. P. 1227–1250.
- 2. Artyukh R. I., Kachalova G. S., Samaryanov B. A. et al. // Molecular Biology. Vol. 29, Nº 1. P. 87–93.
- 3. *Sheldon R. A.* // Advanced Synthesis and Catalysis. 2007. Vol. 349, № 8–9. P. 1289–1307.

4. *Vorobiev A. K., Bogdanov A. V., Yankova T. S. et al.* // Journal of Physical Chemistry B. 2019. Vol. 123, № 27. P. 5875–5891.

* Работа выполнена при поддержке гранта РФФИ 19-33-50073 мол_нр и 18-29-12129 мк.

УДК 577.35

А. Д. Докучаев¹, С. Ю. Хамзин^{1, 2}, О. Э. Соловьева^{1, 2}

¹Институт иммунологии и физиологии УрО РАН, 620049, Россия, г. Екатеринбург, ул. Первомайская, 106, ²Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, 620078, Россия, г. Екатеринбург, ул. Мира, 28

IN SILICO ИССЛЕДОВАНИЕ ВЛИЯНИЯ ЛЕКАРСТВЕННЫХ ПРЕПАРАТОВ НА ФУНКЦИЮ СЕРДЕЧНЫХ КЛЕТОК ПРИ СТАРЕНИИ*

Ключевые слова: математическое моделирование функции сердечной клетки, популяция моделей клетки, кардиотоксичность.

Методы популяционного моделирования позволяют отразить естественную вариабельность поведения клеток в живой природе и демонстрируют высокий предсказательный потенциал при изучении механизмов аритмогенности и кардиотоксичности фармакологических веществ [1].

качестве референтной модели электромеханической активности B кардиомиоцитов использовалась оригинальная модель TP+M [2]. Для формирования физиологически допустимой популяции моделей клеток варьировался ряд параметров модели в широком диапазоне (по аналогии с [1]): 6 параметров, описывающих проводимость основных ионных каналов, 2 параметра максимальной скорости работы Na⁺-K⁺ (NKX) и Na⁺-Ca²⁺ (NCX) обменников и 1 параметр скорости поглощения свободного кальция насосом SERCA (Vmax up). Была сгенерирована начальная популяция в 20 000 моделей кардиомиоцитов. Модели, В которых биомаркеры, виртуальных свободного характеризующие электрическую активность, динамику внутриклеточного кальция и развиваемую силу в клетках, выходили за допустимые физиологические диапазоны, были затем отбракованы. Полученная контрольная популяция виртуальных клеток насчитывала 240 моделей.