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Abstract: Nonlinear control systems presented in the form of differential inclusions with impulse or dis-
continuous positional controls are investigated. The formalization of the impulse-sliding regime is carried out.
In terms of the jump function of the impulse control, the differential inclusion is written for the ideal impulse-
sliding regime. The method of equivalent control for differential inclusion with discontinuous positional controls
is used to solve the question of the existence of a discontinuous system for which the ideal impulse-sliding regime
is the usual sliding regime. The possibility of the combined use of the impulse-sliding and sliding regimes as
control actions in those situations when there are not enough control resources for the latter is discussed.

Keywords: Impulse position control, Discontinuous position control, Differential inclusion, Impulse-sliding
regime, Sliding regime.

Introduction

Impulse-sliding regimes for differential equations arise in problems of impulse optimal control
when the system is affected by perturbations. The formalization of impulse-sliding regimes for
differential equations was done in [8]. When describing the motions of systems subject to per-
turbations, the right-hand side can also be not uniquely defined. Therefore, under the action of
perturbations on the system, it is natural to describe the motion of the system using differential
inclusions and impulse control (see [3, 5]). In [5], the formalization of the impulse-sliding regime
for systems of this type is given. In this paper, we investigate the properties of impulse-sliding
regimes. In addition, an equivalent control method is applied to systems of this type [6, 7]. We
also discuss the issue of the combined use of impulse-sliding and sliding regimes.
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1. Description of impulse-sliding regime

We study a dynamical system

ẋ(t) ∈ F (t, x(t)) +B(t, x(t))u, t ∈ I = [t0, ϑ], (1.1)

with the initial condition x(t0) = x0. Here, F (·, ·) is a multivalued function with convex compact
values in R

n, the matrix function B(·, ·) of dimension n×m is continuous in the set of variables in
the considered domain, and u = (u1, . . . , um)T is a function that describes some control action on
the system.

For F (·, ·), we write the following basic assumptions.

(B1) For almost all t ∈ R, the mapping F (t, x) is upper semicontinuous in x. This means that, for
arbitrary ε > 0, there exists δ = δ(t, x, ε) > 0 such that F (t, x′) ⊂ F ε(t, x) for all x′ ∈ Wδ(x),
where F ε(t, x) is the ε-neighborhood of the set F (t, x) and Wδ(x) is the δ-neighborhood of
the point x.

(B2) For any x, the multivalued mapping t → F (t, x) has a measurable selector, i.e., there is a
measurable function f(t) ∈ F (t, x) for almost all t ∈ I.

(B3) The multivalued mapping F (t, x) satisfies the condition of sublinear growth: the inequality
‖w‖ ≤ l(1 + ‖x‖) holds for any (t, x) ∈ R

n+1 and w ∈ F (t, x).

Under these assumptions, the differential inclusion

ẋ ∈ F (t, x) (1.2)

has a solution x(t), which can be extended to the entire number axis R
1 (see [1]). It is assumed

that the matrix B(t, x) satisfies the Frobenius condition

n
∑

ν=1

∂bij(t, x)

∂xν
bνl(t, x) =

n
∑

ν=1

∂bil(t, x)

∂xν
bνj(t, x),

which will provide the unique reaction of system (1.1) on the control u in the case when u is an im-
pulse action on this system (see [9]). By impulse positional control, we mean some abstract operator
(t, x) −→ U(t, x) that maps the space of variables t, x into the space m of vector distributions [8]
according to the rule

U(t, x) = r(t, x(t)) δt,

where r(t, x) is a vector function with values in R
m and δt is the Dirac impulse function concentrated

at the point t. “Running impulse” r(t, x(t)) δt as a generalized function does not make sense. An
impulse control of this type is understood as a discrete implementation of a “running impulse”
in the form of a sequence of correcting impulses concentrated at the points of some partition
h : t0 < t1 < . . . < tN = θ of the segment I. The result of such a sequential correction is
a discontinuous curve xh(·), here called “Euler’s broken line” or impulse-sliding regime. Let us
describe more precisely the impulse-sliding regime. Let us define a network of “Euler’s broken
lines” xh(·) corresponding to the set of partitions directed in magnitude

d(h) = max(tk+1 − tk), h : t0 < t1 < · · · < tp = ϑ

of the segment I. For this purpose, we first define the jump function by means of the equations

S(t, x, r(t, x)) = z(1) − z(0), ż(ξ) = B(t, z(ξ))r(t, x), z(0) = x.
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Here, we take into account that, in fact, the dependence z = z(ξ, t, x, r(t, x)) takes place. Note also
that the jump function is a vector function S = (S1, . . . , Sn).

The jumps of the “Euler’s broken lines” at the points of the partitions h of the segment I are
determined by the equations

S
(

ti, x
h(ti), r(ti, x

h(ti))
)

= z(1)− z(0), ż(ξ) = B(tti , z(ξ))r(ti, x
h(ti))

with initial conditions z(0) = xh(ti). The “Euler’s broken line” xh(·) is constructed as a function
of bounded variation, which coincides with the solution of the differential inclusion (1.2) on each
interval (ti, ti+1] with initial conditions

x(ti) = xh(ti) + S(ti, x
h(ti), r(ti, x

h(ti)), x(t0) = x0, i = 0, . . . , p − 1.

We will assume that the following equality is valid for all admissible t and x:

r
(

t, x+ S(t, x, r(t, x))
)

= 0, (1.3)

which means that, after an impulsive action on the system at time t, the phase point x(t) will be
on the manifold (target set)

Φ =
{

(t, x) : r(t, x) = 0
}

.

Note that the definition of the jump function and condition (1.3) imply the relation

S = 0 ⇔ r = 0,

which is further used without reservation. It is also assumed that the functions S(t, x, r) and r(t, x)
are continuously differentiable.

Under some additional assumptions, the sequence of “Euler’s broken lines” has a convergent
subsequence, the limit of which will be on the surface Φ. It is called the ideal sliding mode. The
purpose of the impulse control is to keep the phase point on the manifold Φ. In [5], the differential
inclusion of an ideal pulse-sliding mode is obtained in the form

ẋ ∈
∂S(t, x, r(t, x))

∂t
+

∂S(t, x, r(t, x))

∂r

∂r(t, x)

∂t

+

(

E +
∂S(t, x, r(t, x))

∂x
+

∂S(t, x, r(t, x))

∂r

∂r(t, x)

∂x

)

F (t, x),

x(t0 + 0) = x(t0) + S
(

t0, x(t0), r(t0, x(t0))
)

.

(1.4)

Controls of the positional-impulse type were used to solve various problems of game theory and
control, in particular, when constructing positional impulse controls in degenerate linear-quadratic
optimal control problems. Note also that “Euler’s broken lines” for the same positional impulse
control may differ in the way of constructing jumps. One of them is listed above. Another one can
be found in [4]. Accordingly, the equations of ideal sliding-impulse modes will differ.

In literature, you can find other methods for constructing jumps of impulse control, where the
term “impulse-sliding regime” is used in a broader sense. As for processes of “sliding” type, to a
greater extent, they are an attribute of controlled systems with discontinuous positional controls
(feedbacks) and the theory of discontinuous systems in general, where such movements are called
sliding regime. In this paper, a differential inclusion with discontinuous positional controls with
constraints on control resources is constructed for which the ideal “impulse-sliding regime” of
inclusion (1.1) is the usual sliding regime in the sense of the theory of discontinuous systems.
It is the main mode of functioning of a discontinuous controlled system and allows solving such
problems as stabilization, complete controllability, and tracking (movement along a predetermined
trajectory). A huge number of works are devoted to these questions.
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2. Multivalued equivalent controls

We will consider a controlled differential inclusion

ẋ ∈ F (t, x) + ũ, (2.1)

where ũ = (ũi, . . . , ũn), ũi(t, x) = −Hi(t, x) sgnS
i, Hi(t, x) ≥ 0 are some continuous functions, and

Si is the ith component of the jump function, i = 1, . . . , n.
If Si = 0, then denote by Ũi(t, x) the segment [−Hi(t, x),Hi(t, x)] and if Si 6= 0, then

Ũi(t, x) = ũi. Let Ũ(t, x) = Ũ1(t, x)× · · · × Ũn(t, x). Under a solution to problem (2.1), we mean a
solution to the differential inclusion

ẋ ∈ F (t, x) + Ũ(t, x), (2.2)

those, absolutely continuous function satisfying (2.2) almost everywhere on the considered seg-
ment I.

We will represent inclusion (2.2) in the form of a controlled system

{

ẋ ∈ F (t, x) + ũ,

ũ ∈ Ũ(t, x).
(2.3)

A solution to problem (2.3), defined on the segment I, is a pair (x(t), ũ(t)) consisting of an
absolutely continuous function x(t) (trajectory) and a measurable function ũ(t) (control) satisfying
inclusions (2.3) almost everywhere on I.

Lemma 1. Let the multivalued mapping F (t, x) satisfy conditions (B1)–(B3), and let the func-

tions r(t, x) and Hi(t, x) be continuous. Then, for any initial conditions x(t0) = x0, there exists a

solution to inclusion (2.2) and, for any solution x(t) to inclusion (2.2), there exists a measurable

function ũ(t) such that the pair (x(t), ũ(t)) is a solution to problem (2.3).

P r o o f. It is easy to check that the multivalued mapping Ũ(t, x) is upper semicontinuous
and locally bounded. Then the right-hand side of inclusion (2.2) is upper semicontinuous, as the
algebraic sum of two upper semicontinuous multivalued mappings. In addition, it is easy to check
that the right-hand side of inclusion (2.2) possesses property (B1) and is integrally bounded. Then
there exist a solution to inclusion (2.2) (see [1]).

Let x(t) be a solution to inclusion (2.2). Then

ẋ(t) ∈ F (t, x(t)) + Ũ(t, x(t))

for almost all t ∈ I and Filippov’s implicit function lemma (see [1, Theorem 1.5.15]) implies the
existence of a measurable function ũ(t) ∈ Ũ(t, x(t)) such that ẋ(t) ∈ F (t, x(t)) + ũ(t) for almost
all t ∈ I. Then the pair (x(t), ũ(t)) is a solution to the controlled system (2.3) and the lemma is
proved.

We consider sliding regimes to inclusion (2.1) in relation to the surface

Γ =
{

(t, x) : S(t, x, r(t, x)) = 0
}

or, which is equivalent, to the surface Φ.
A solution x(t) to inclusion (2.1) satisfying the condition (t, x(t)) ∈ Φ will be called the sliding

regime. One of the main ways to obtain equations of sliding regimes of discontinuous control
systems is the method of equivalent controls (see [2]). The controls should be chosen so that the
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velocity vector ẋ(t) at the points (t, x(t)) of the discontinuity surface lies in the tangent plane to
this surface. Such controls ũeq are called equivalent if they satisfy the given constraints. In the
problem under consideration, these constraints have the form ũeq ∈ Ũ(t, x).

We denote by St the partial derivative of the mapping t → S(t, x, r(t, x)) with respect to the
variable t and by Sx the Jacobi matrix of the mapping x → S(t, x, r(t, x)) with respect to the
variable x. Let

Ũ eq(t, x) = St + SxF (t, x).

Define a multivalued analogue of equivalent control for differential inclusion (2.1) in the form

Ũ∗eq(t, x) = Ũ eq(t, x) ∩ Ũ(t, x).

Theorem 1. Let x(t) be a sliding regime of inclusion (2.1) and

Sx = −En (2.4)

for any (t, x) ∈ Γ, where En is an n× n identity matrix. Then

Ũ∗eq
(

t, x(t)
)

6= ∅ (2.5)

for almost all t and the function x(t) is the trajectory of the controlled system

{

ẋ ∈ F (t, x) + ũ,

ũ ∈ Ũ∗eq(t, x).
(2.6)

P r o o f. Since the function x(t) is a solution to inclusion (2.2), according to Lemma 1, there
is a measurable function ũ(t) ∈ Ũ(t, x(t)) such that the inclusion ẋ(t) ∈ F (t, x(t)) + ũ(t) holds
for almost all t. Since (t, x(t)) is a sliding regime, we have (t, x(t)) ∈ Γ and, from the condition
Sx(t, x(t), r(t, x(t)) = −En, we get

0 ∈ St(t, x(t), r)t, x(t)) + Sx(t, x(t), r(t, x(t))F (t, x(t)) − ũ(t). (2.7)

It follows from (2.7) that ũ(t) ∈ Ũ eq(t, x(t)) for almost all t. Hence, ũ(t) ∈ Ũ∗eq(t, x(t)) for
almost all t ∈ I, condition (2.5) holds, and the pair (x(t), ũ(t)) is a solution to the controlled
system (2.6). The theorem is proved.

Theorem 1 gives a necessary condition for the existence of a sliding mode for a differential
inclusion (2.1).

We investigate sufficient conditions for the existence of sliding regimes S using the function

V (t, x) =
1

2
〈S, S〉,

where 〈·, ·〉 stand for the scalar product.
For any δ > 0, we use the notation

Wδ(t, x) =
{

(t′, x′) : ‖x′ − x‖ < δ, |t− t′| < δ
}

.

Theorem 2. Let condition (2.4) hold and, for every point (t, x) ∈ Γ, there exist ε > 0 and a

neighborhood Wδ(t, x) such that

max
w∈F (t′,x′)

|Si
t + wi| < Hi(t, x)− ε (2.8)

for all indices i = 1, . . . , n and all (t′, x′) ∈ Wδ(t, x).
Then the following statements are true.
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(1) For any solution to inclusion (2.1) with initial conditions (t0, x0) ∈ Γ, there holds (t, x(t)) ∈ Γ
for all points t ≥ t0 at which this solution exists.

(2) For any initial conditions (t0, x0) ∈ Γ, there is a sliding regime of inclusion (2.1) defined as

a solution to inclusion (2.2), and any solution x(t) with initial condition (t0, x0) ∈ Γ is a

sliding regime if and only if it is a trajectory of the controlled system (2.3) with the same

initial condition.

Theorem 2 follows from statements 1 and 3 of Theorem 3 from [4] with the replacement of
the function σ(t, x) by the function S(t, x, r(t, x)) and the use of Lemma 1, condition (2.4), and
inequality (2.8).

3. Impulse-sliding and sliding regimes of differential inclusions

It follows immediately from the definitions that the differential inclusion (1.4) of the ideal
impulse-sliding regime is written as

ẋ ∈ F (t, x) + Ũ eq(t, x). (3.1)

Then the results of the previous section can be applied to it.

Theorem 3. Let conditions (B1)–(B3) be satisfied, and let (2.4), (1.3), and inequality

‖S(τ, y, r(τ, y)) − S(t, x, r(t, x))‖ ≤ L(|τ − t|+ ‖y − x‖), (3.2)

also hold for all admissible t, τ, x, and y. Then:

(1) For inclusion (1.1), any sequence of “Euler’s broken lines” has a subsequence uniformly

converging to the ideal impulse-sliding mode, any ideal impulse-sliding regime x̃(t) satisfies

the condition S(t, x̃, r(t, x̃)) = 0 and is a solution to the discontinuous system (2.2) and the

trajectory of the controlled system

{

ẋ ∈ F (t, x) + ũ,

ũ ∈ Ũ eq(t, x)
(3.3)

with the initial condition x̃(t0 + 0) = x0 + S(t0, x0, r(t0, x0)).

(2) If, in addition, inequalities (2.8) hold, then any ideal impulse-sliding regime x̃(t) (1.1) is a

sliding regime (2.2) with discontinuous positional control ũ.

Note that the controlled system (3.3) and the differential inclusion (3.1) are equivalent in the
sense that any trajectory from the pair (x(t), ũ(t)) is a solution to inclusion (3.1) and any solution
to this inclusion is a trajectory of system (3.3).

Note also that the sliding mode in Theorem 3 is stable with respect to the target set Φ. If this
is not the case (outside the scope of Theorem 2), then the usual sliding mode can be terminated
and the solution can be kept on the target set using the impulse-sliding regime.
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4. Example

Consider a controlled system
{

ẋ1(t) = −sgn(x2(t)− 1) + x1(t)u1,

ẋ2(t) = −sgn(x1(t)− 1) + x2(t)u2.
(4.1)

It is required to organize a sliding mode on the set x1 ≡ 1, x2 ≡ 1. In this case, impulse control
can be omitted. We put u1 ≡ u1 ≡ 0. Then the trajectory of the system (4.1) in the space x1, x2, t

reaches the plane x1 = 1 or x2 = 1. After that, moving along this plane, it reaches the straight line
x1 = x2 = 1 and will stay on this straight line in sliding regime.

If we consider the system
{

ẋ1(t) = sgn(x2(t)− 1) + x1(t)u1,

ẋ2(t) = sgn(x1(t)− 1) + x2(t)u2,
(4.2)

then it is possible to provide sliding on the set x1 = x2 = 1 only with the help of the impulse-sliding
regime.

The vector function r = (r1, r2)
T is defined by the equalities

r1(t, x) = − lnx1, r2(t, x) = − lnx2.

The control u has the form
U(t, x(t)) = r(t, x)δt.

The problem for the impulse control u is to keep the phase point at the intersection of the
straight lines x1 = 1 and x2 = 1, which are determined from the conditions lnx1 = 0 and lnx2 = 0.
The jump function S(t, x, r) has the form

S(t, x, r) =

{

x1(e
r1 − 1),

x2(e
r2 − 1).

The multivalued function F (x) on the right-hand side of system (4.2) is defined as follows:

Fi =











1, xi > 0,

−1, xi < 0,

[−1, 1], xi = 0,

i = 1, 2.

This corresponds to the simplest convex extension of the right-hand side of the discontinuous
equation (4.2) in Filippov’s sense.

The fulfillment of conditions (1.3) and (2.4) for these functions r(t, x) and S(t, x, r(t, x)) is
verified directly.

The impulse-sliding regime is described by the equations ẋ1 = 0 with the initial condition
x1(0+) = 1 and ẋ2 = 0 with the initial condition x2(0+) = 1. In order, in accordance with Theo-
rem 3, to write a differential inclusion of the form (2.2), it is necessary to specify the coefficients H1

and H2 satisfying inequalities (2.8). It is easy to see that these can be any numbers exceeding one.

5. Conclusion

The impulse control that transfers the manipulator from a given position to its final position
is constructed in the work. A computational experiment showing the efficiency of the proposed
algorithm is presented. The proposed algorithm is simulated in the case when the ideal impulse is
approximated by the usual bounded control.
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