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Abstract. An isothermal nonlinear gradient flow of a horizontal layer of a vertically vortex fluid is considered. The 
Navier-Stokes equation uses a solution describing the velocity and pressure fields. This solution is a linear function of the 
longitudinal (horizontal) coordinates with coefficients depending on the transverse (vertical) coordinate. For the obtained 
general exact solution, the boundary-value problem is solved with the no-slip conditions, nonzero tangential stresses, and 
constant pressure gradients set at the boundaries of the infinite fluid layer. It is shown that, for the considered boundary 
conditions, up to three stagnation points can arise in the fluid layer. The velocity or its components change their direction 
to the opposite at these stagnation points. 

PROBLEM STATEMENT 

The Navier-Stokes equation describing the isothermal motion of a viscous incompressible fluid, supplemented 
by the incompressibility equation [1], is written in the vector form as 

 

   P +
t


     



V
V V F V , (1) 

 0 V . (2) 
 

The following notation is introduced in equations (1) and (2):    , , , , ,x y zt x y z V V VV  is a velocity vector;  P  is 

the deviation of pressure from hydrostatic, taken relative to constant average fluid density  ;  0;0; gF  is the 

density of the field of mass forces;   is kinematic viscosity; 
x y z

  
  

  
i j k  is the three-dimensional 

Hamilton operator, 
2 2 2

2 2 2x y z

  
   

  
 is the three-dimensional Laplace operator [1]. 

The motion of a viscous incompressible fluid occurs in a horizontal infinite layer parallel to the plane Oxy . The 

coordinate axis Oz  is directed vertically upwards. The lower and upper boundaries of the fluid layer are set by the 

equations of the planes 0z  and z h , respectively. The problem assumes that the flow is stratified, i.e. that the 

vertical velocity component is zero, 0zV  . 

The exact solution to system (1), (2) is considered in the following form [2–6]: 
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     ,xV y z U z yu z  ; 

  yV V z ; (3) 

   0 1 2, ,P x y z P z xP yP   . 

 
The uniform pressure term is defined as follows: 
 

    0P z g z h S   , (4) 

 

where S  is the atmospheric pressure specified on the upper free surface of the considered fluid layer. Formula (4) 
defines the pressure field that is used when the hydrostatic approximation of the Navier-Stokes equations are 
considered. 

The components 1P  and 2P  are constant coefficients, pressure gradients along the longitudinal coordinates x  and 

y , respectively. The fluid motion characterized by the pressure function (3) is a generalization of the classical 

Poiseuille flow [7–11]. 
We substitute the exact solutions class (3) into the nonlinear system (1), (2) projected on the axis of the Cartesian 

coordinate system. The primes mark the derivatives of the functions with respect to the z  coordinate. We obtain a 

system of ordinary differential equations for determining three unknown functions U , u , and V  written in the 
order of integration as 

 

0u  ; 
 

2V P  ; (5) 

1U Vu P   . 

AN EXACT SOLUTION TO THE BOUNDARY VALUE PROBLEM 

The horizontal (longitudinal) pressure gradients 1P  and 2P  are constant and set at the upper boundary of the fluid 

layer determined by the equation z h . 
Let the no-slip condition be satisfied at the lower boundary of the horizontal layer of a viscous incompressible 

fluid defined by the plane equation 0z . When studying the flow properties, the tangential stresses at the upper 

boundary defined by the plane equation z h  are assumed to be non-constant, but spatially inhomogeneous, by 
analogy with the boundary conditions considered in [12, 3, 13, 14]. Thus, taking into account the form of 
solutions (3), the boundary conditions are written in the form 

 

 0 0U  ;   0 0u  ;   0 0V  ; 

 

1

z h

U

z 


  


;
2

z h

u

z 


  


;
3

z h

V
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. (6) 
 

The exact particular solution to the boundary value problem (5), (6) has the form 
 

2u z





;   2 2 32
2

P z P h
z
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ANALYSIS OF THE EXACT SOLUTION FOR THE VELOCITY FIELD 

Let us analyze the obtained solution (7). Extensional acceleration u  (parallel to the abscissa axis) is a monotonic 

function that increases or decreases depending on the sign of the horizontal gradient of the tangential stress 2  at the 

free boundary of the fluid layer specified by the equation z h . 

The velocity component V  can take on zero values for 0z  and  2 3 22 /Phz P .  Thus, for the function V  to 

vanish on the interval  0;h , the following double inequality must be satisfied:  

 

3

2

1
1

2hP
  


 . 

 
We can conclude that, for the stagnation point of the velocity component V  to exist, it is necessary that the pressure 
gradient along the ordinate axis /P y   and the tangential stress /V z    at the upper boundary of the fluid layer be 

simultaneously either positive or negative, i.e. either compressive or tensile. Figure 1 shows the profile of the 
velocity component V  for the case of the stagnation point existing inside the thickness of the considered fluid layer. 
 

 
FIGURE 1. The profile of the velocity component V  for the case of the stagnation point existing in the bulk of the fluid layer 

( 2h   m, 6
2 5 10P     m2/s2, 6

3 6 10     m/s2) 

 

The analysis of the velocity component U   in the interval  0;h  reduces to the determination of the zero points 

of the function U , i.e. to finding the roots of the equation 0U  . We introduce the dimensionless coordinate 

/q z h ; thus, the study area is reduced to the interval  0;1q  . Figure 2 shows the profile of the velocity 

component U  in the case of the existence of three zero points in the interval  0;1 . Figure 3 shows the 

corresponding streamlines in the case that the velocity component U  has three zero points in the interval  0;1  and 

the velocity component V  has one. 
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FIGURE 2. The profile of the velocity component U  in the case of the existence of three zero points in the interval  0;1  

 

 
FIGURE 3. The streamlines for the following parameter values: 610  m2/s, 100h  m, 6

1 1.464 10    m2/s2, 15
2 10   m/s2, 

8
3 2.86 10     m2/s2, 9

1 2.82 10P     m/s2, 10
2 4 10P    m/s2. 

 
Taking into account the dimensionless coordinate q , the specific kinetic energy for the obtained type of velocity 

has the form 
 

 
2 2

2
2

2 2 32
2

4

hqyh q
hP q hT P


        




   
2

4 32 5 4 2
2 2 3 2 2 31 2 2 1 1

3 3 3

4 5 8

2 40 12 24

h q hP h hPh Pq h P q h P
q

         
      

      

. 

 
The total velocity of the fluid flows vanishes at the point where the specific kinetic energy T  is zero. Figure 4 shows 
a graph of the specific kinetic energy function with one zero point in the plane 0y  . Figure 5 shows the 

streamlines for the same parameter values. 
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FIGURE 4. The graph of the specific kinetic energy function T  

 

 

FIGURE 5. The streamlines for the following parameter values: 610   m2/s, 100h  m, 6
1 1.472 10    m2/s2, 

15
2 10   m/s2, 8

3 2.86 10     m2/s2, 9
1 2.82 10P     m/s2, 10

2 4 10P    m/s2 
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CONCLUSION 

An exact solution has been constructed for the isothermal gradient Poiseuille flow, which describes the motion of 
a viscous incompressible fluid in a horizontal infinite layer. It has been shown that, for the considered boundary 
conditions, up to three counterflow regions can arise in the bulk of the fluid layer, where the velocity changes its 
direction to the opposite. Streamline solutions corresponding to various cases have been demonstrated. 
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