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Manipulation of the atomic lattice using high power single-period THz pulses has been 

proven already directly by time-resolved X-Ray diffraction (XRD) techniques in different types 

of dielectrics [1-2]. Possibility to contactless displacement of polar ion is particularly important in 

ferroelectrics, where the frequency limitation arises due to the conventional circuit limitations for 

coupling electrical pulses through electrode structures on a sub-100-picosecond (ps) time scale. At 

the same time, the dynamics of electric polarization lies at the heart of ferroelectric-based ultrafast 

next-generation piezoelectric, electro-optic, and nonvolatile memory devices. Along with XRD, 

optical second harmonic generation (SHG) is widely used for justification ferroelectric switching 

under THz pulse [3-4]. 

In ferroelectrics, analogously to magnetic materials, short electromagnetic pulses may cause 

coherent collective excitations. In ferroelectric these are phonons, including the soft mode ones. 

Amplitude of such excitations is much larger than in case of thermal excitations. Excitations take 

place coherently over macroscopic area of illuminating spot (from tens to thousands of square 

microns). In this case, one can consider dynamical switching of ferroelectric polarization within 

the electromagnetic pulse duration following by relaxation. If the amplitude of coherent 

oscillations is high enough to transfer the process into highly nonlinear regime, than oscillating 

polar ion may relax to the different position of two-minima potential regarding to its initial 

position. In contrast to coherency of oscillation, these relaxations are stochastic. Thus, polarization 

switching, if takes place, is temporally limited: in dynamical range – to the reverse soft mode 

frequency; for polarization reversal – to the pulse duration. 

In this presentation, we focused on theoretical justification on the conditions (parameters of 

ferroelectric crystal and electromagnetic pulse) providing both regimes of polarization switching 

within the Landay-Khalatnikov (LK) model. The model describes not only the ion displacements, 

but also the nonlinear-optical response of the materials. We took real parameters of the potential 

function of different crystals and considered LK equations with 1 ps THz pulse as external force. 

In this way, SrTiO3, KTaO3, BaTiO3, (BaSr)TiO3 were investigated. We make search for 

parameters and materials which can provide conditions for both types of switching. In description 

of the non-linear optical response we take into account the initial non-polarized multidomain state. 

Due to the nonidentical initial conditions for such a state, the solutions of the Landau–Khalatnikov 

equation are also nonidentical, and their interference gives a nonzero second harmonic field under 

THz electric field. We consider the temperature dependences of the second harmonic in the 

framework of such a model. 

Experimentally, we performed a comparative study of THz field induced SHG in different 

ferroelectrics, incipient ferroelectric and multiferroic materials: SrTiO3, KTaO3, (BaSr)TiO3, 

BiFeO3, (BaSr)TiO3/BiFeO3. In these materials using time-domain spectroscopy (THz pump–

optical probe), studies have been carried out of the temporal dependences of the intensity of the 

optical second harmonic. The highest switching efficiency was revealed in (BaSr)TiO3 

multidomain films near the phase transition where the soft mode is very wide and overlaps with 

the THz pulse in a frequency domain. In this material, we have proven the dynamic switching of 

the ferroelectric polarization with a THz pulse starting from a field of 300 MV/cm. 
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