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At present intensive studies of ferroelectric systems with negative capacitance are carried 

out all over the world (see [1] and references therein). The authors of paper [2] were the first who 

succeeded in obtaining experimentally thermodynamically stable bilayer ferroelectric system of 

lead zirconate-titanate Pb(Zr0.2Ti0.8)O3 and strontium titanate SrTiO3 which has a negative 

differential capacity at room temperature. Three years later the same effect has been found in 

another nanoscale heterostructure consisting of barium titanate BaTiO3 and strontium titanate 

SrTiO3 [3]. For brevity we shall call these systems by NC-capacitors. 

The voltage UNC between the plates of the NC-capacitor depends on its charge q as follows 

[2,3]: 

 
3)( qqqUNC   , (1) 

where coefficients  and  are considered to be positive [2, 3]. 

 

Figure 1. Electrical scheme of oscillatory circuit with NC-capacitor. 

Behavior of circuit on Figure 1 under the action of blocking-generator is described by the 

following Hamilton function: 
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where x and y are dimensionless electrical charge on NC-capacitor and dimensionless electrical 

current through NC-capacitor respectively, force in this system coincides with voltage (1) in 

dimensionless form and influence of input voltage from blocking-generator is simulated by series 

of Dirac delta functions with dimensionless period . 

In accordance with general approach developed in [4] one can reduce description of 

dynamical system (2) to investigation of point mapping on semicilinder action I  – angle   

variables for system under  = 0: 
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Phase portrait of unperturbed system is presented on Figure 2. 

 

Figure 2. Phase plane of unperturbed system. 
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Frequency of nonlinear oscillations depending on dimensionless energy h  of unperturbed 

system is equal to [5]: 
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, (4) 

two different expressions corresponding to motion of unperturbed system inside or outside of 

homoclinic loop on Figure 2. But in mapping (3) frequency (4) depends on action variable I  

therefore it is required to use the next formulae for this value too: 
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In expressions (4) and (5) 
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hhA  411)( , )(k  and )(k  are complete elliptic integrals of the first and the second 

kind respectively [6]. 

At last coordinate of unperturbed system is expressed via Jacobi elliptic functions [5]: 
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It is obvious that in formulae (6) instead of dimensionless energy h  one ought to use action 

variable I  which can be found as inverse function for expressions (5). 

In the report presented dynamics of mapping (3) with different values of its parameters is 

under investigation. In particular passage of phase point through homoclinic loop on Fig. 2 is taken 

into account too.  

This picture has been compared with picture arising under description of system (2) in the 

framework of distribution function ),,( tyxf  obeying to the Liouville equation [4]: 
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