PR-3. A PASE-BASED APPROACH TOWARDS SYNTHESIS OF EPOXY KETONES

S. Santra¹, A. Mukherjee¹, G. V. Zyryanov^{1, 2}, A. Majee³

 ¹Ural Federal University of the first President of Russia B. N. Yeltsin, Mira St., 19, Yekaterinburg, 620002, Russia
²I. Ya. Postovsky Institute of Organic Synthesis UB RAS,
S. Kovalevskoy/Akademicheskaya St., 20/22, Yekaterinburg, 620990, Russia
³Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India

E-mail: sougatasantra85@gmail.com

A PASE (pot, atom, step, economic)-based approach was reported towards the synthesis of α,β -epoxy ketones from one pot reaction between aldehydes and ketones. Epoxidation of electron deficient alkene particularly α,β -unsaturated carbonyl compound is one of the very important reaction in organic synthesis. In most of these methods the authors have used chalcone precursors for the synthesis of α,β -epoxy ketones [1]. However, although existing methods are quite useful, the construction of the epoxide moiety through one pot two component coupling from readily available and simple starting materials employing metal-free catalysts with environmentally benign oxidants under solvent-free conditions is highly desirable. So the developing new methodologies with special emphasis to green chemistry [2] herein we are pleased to report an efficient method for the synthesis of α,β -epoxy ketones from one pot reaction between aldehydes and ketones in presence of cesium carbonate (Cs₂CO₃) and *tert*-butyl hydrogen peroxide (TBHP) under neat conditions. The main advantage of our methodology is that no need to presynthesize the chalcone precursors for this reaction.

References

1. Highly Enantioselective Epoxidation of α,β -Unsaturated Ketones Catalyzed by Rare-Earth Amides $[(Me_3Si)_2N]_3RE(\mu-Cl)Li(THF)_3$ with Phenoxy-Functionalized Chiral Prolinols / C. Zeng [et al.] // Org. Lett. American Chemical Society, 2015. Vol. 17, No 9. P. 2242–2245.

2. Bronsted acidic ionic liquid-catalyzed tandem reaction: an efficient approach towards regioselective synthesis of pyrano[3,2-c] coumarins under solvent-free conditions bearing lower E-factors / S. Mahato [et al.] // Green Chem. Royal Society of Chemistry, 2017. Vol. 19, No 14. P. 3282–3295.

This work was supported by the Russian Science Foundation (Ref. N_{2} 18-73-00301). A. Majee acknowledges financial support from the DST-RSF Major Research Project (Ref. N_{2} INT/RUS/RSF/P-08).