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Abstract. The Arctic zone of the Russian Federation (AZRF) is characterized by the specificity 
of the development of its interconnected critical infrastructures' objects (ICI) - power 
generation and transmission systems, social infrastructure facilities, transportation (land, air, 
water)  and communication systems, by the exceptional importance of their stable operation. 
The spatial isolation of the ICI objects predetermines, practically for each municipality, 
formation of its specific configuration, defining the range of needed capacities, corresponding 
set of ICI objects, etc. The main functional of Arctic ICI objects is to provide and sustain life 
support. Authors developed a model that permits high resolution description of ICI operation 
on the local level. The accuracy of the model is enough, especially for describing electrical and 
water supply grids and nets. Its substantial advantage is the generality of its mathematical 
description of the ICI of different physical nature and its capacity to account for the 
randomness of ICI parameters. The model permits simulation of the ICI behavior on the local 
level when exposed to ordinary, everyday conditions and in emergency situations (i.e., during 
an industrial disaster, Natural catastrophe or a terrorist attack). Several specific problems were 
solved using this approach for the AZRF region. 

1.  Introduction 
In order to solve the problem outlined in the title of the paper, it is necessary to create a model of CI 
operation which would allow, for fixed external forces and actions, to assess the character and volume 
of damage, and produce numerical assessments of all possible consequences.  

From the description of the problem it is obvious that the model should allow finding in a 
comparatively simple way and without big errors numerical values of all types of damage and how 
they change in time. The described model permits modeling ICI operation on the local level, which is 
very important when applying the "from-bottom-up" approach to assessing the resilience of the ICI 
[6], [7]. Most adequately fit models to solve these kinds of problems are the logic-structural models 
proposed by I.A. Ryabinin, different transportation network models, Petri networks and Bayesian nets 
[1], [3]. In this paper the advanced transportation network model [8] is used. 

This synthetic practical model describes functioning of interdependent systems of critical 
infrastructures (ISCI), each of which is represented in the form of a transportation/services network 
comprised of nodes and directed links. Nodes typically represent physical infrastructure components 

http://creativecommons.org/licenses/by/3.0
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(the so-called assets, such as electrical power grids and plants, oil, gas and water transmission pipeline 
systems, sewage systems, railway and highway systems, hospitals, industrial and office buildings, 
living quarters and the like), which are directly involved in supplying the population and different 
industries with different products or commodities, and services. The links of the network are modeling 
the flow (product transportation) between the nodes and may present electrical power lines, main and 
distribution pipelines of gas and oil; water supply and sewage systems, as well as railways and 
highways, etc.  

Below, when describing the supply process, the generalized notion of "product" will be used for all 
types of consumption. Due to this factor it has a higher resolution as compared to ordinary methods, 
constructed for analyzing ICI on a national scale, as it is capable of accounting for local specifics of 
ICI, such as presence of product storages and emergency operators.  

The model considers the conditions and specifics of supply, delivery, overhaul, and demand of 
resources, such as electricity, hot and cold water, and removal of the human activity waste or 
industrial waste [1].  

It should be noted that the described approach ensures only the continuity of product flow in the 
nodes; at the same time, the physical laws, which define the patterns of product flow may not be 
complied with. But the accuracy of such simplified models is sufficient for most practical cases, 
especially for the electricity and water supply systems [4]. Considerable advantage of such models is 
the generality of the mathematical description of CI of different physical nature and their ability to 
account for the probabilistic character of the CI model parameters. 

2.  Generalized probabilistic model of ICI in the form of a network flow 
The described below CI model is a generalization of existing models of transportation networks 

(flows). The infrastructure is presented in Fig. 1 by a digraph G (V, E), i.e., by a set of nodes V, which 
are connected with directing edges (links) E. In the standard model nodes are the physical components 
of the infrastructure, which are responsible for the supply and, overhaul of the product, and the edges 
are responsible for the transportation (flow) of the product between the nodes [8]. 

 

 

Figure 1. Basic parameters of the net flow model. 
 
The model is developed for modeling behavior of the operating ICI on the local level in normal and 

emergency situations (such as industrial incidents, Natural catastrophes, or terrorist attacks). In order 
to reach this goal following modifications were introduced into the model [8]: 

• if the CI is damaged, the modeling it network may become unbalanced, i.e., the overall 
demand of a specific product k may be larger than its on-hand supply. In order to be able to 
conduct the modeling some variables λk are introduced, which describe the cropped-up 
unsatisfied demand/deficit (the difference between the volume of actual demand of the 
product and the volume of its actual availability), as well as the corresponding to the cropped- 
up deficit rise of prices or fines kcλ ;  

• resilience of the ICI systems may be increased by using local storages and/or production of 
needed products (like, spare pumps or generators). 
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Parameters that describe the quality of operation of CI physical components (assets) of the 
infrastructure network such as productivity, transportation capacity, demand) may be described at first 
approximation as random variables (RV). It is also possible to give to each network node (asset) 
scientifically justified/supported values of their failure rate. These probabilities are found using the 
statistical data on assets failures or through data obtained by corresponding probabilistic 
calculus/design. 

To take these into account variables representing storage, sk, and production, πk (with the 
corresponding costs, csk and cπk, respectively) have also been added to the model. 

To take unmet demand/shortage into account variables sk and πk, representing storage and 
production, respectively, with the corresponding costs 

s
kc  and kcπ are added to the model. Thus, the 

model distinguishes a commodity received from sources outside of the local infrastructure, from a 
commodity of local production and storage. However, to produce a commodity k another commodity 
(or commodities), n, is usually consumed. 

To distinguish between traditional supply and internal production, the variable πk is considered as 
the sum of variables:  

• ,k kπ , representing the traditional supply (i.e., supply from sources outside the boundaries of 
the local infrastructure); 

• ,n kπ , representing the internal production (i.e., consumption of commodity n to produce k is 
taken into account). 

In a similar way, the variable kk , representing consumption of a commodity k, is the sum of 
variables:  

• ,k kk , which denotes traditional demand k;  
•  ,n kk , denoting consumption of k for production of a commodity n. 

The (links) edges of the considered model are analogous to the edges that are used in traditional 
transportation network model: each edge is a flow/supply channel of one product. 

The volume of products stored in the node may change in time. Particularly, when the 
infrastructure is damaged due to an incident or catastrophe, and the available on-hand products are 
used to compensate for the cropped up undersupply. In order to account for this most important 
circumstance the time factor is explicitly introduced into the model.  

The process of solving the problem starts from the moment of time t0 when the initiating the CI 
failure event (infrastructure incident or catastrophe) occurs. The solutions are found for discrete 
moments of time with increment Δt (which could be variable) to the moment of full restoration of the 
damaged CI. On each time increment all the variables and constants do not change [5]. When 
forecasting the possible CI damage (i.e., assessment of its partial or full failure), independent from the 
character of the type of forces acting on the infrastructure, it is necessary to quantitatively assess the 
considerable uncertainty of parameters of the model equations. This assessment is performed either by 
establishing the probabilities of failure of the CI assets, as given by the nodes, or by considering the 
asset productivity and/or the volume of supply as random variable (RV). As the demand of products 
could be uncertain, it also is regarded as a RV. 

3.  A multifunctional nodes model  
If the same node could simultaneously act both as a consumer and a producer, have storage facilities, 
emergency generators and, at the same time, belong to several different CIs, it is called a 
multifunctional node. 

Let us describe the relationship between variables and constants, representing four functions of a 
multifunctional node of an infrastructure, as shown in Fig. 1.  

The balance equations at a node i for commodity k are 

 0,i i i i i
k k k k kf sπ k τ← + − − − =  (1) 
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 0,i i
k kfτ →− =   

where ,i i
k kf f← →  are the commodities inflow and outflow rates; i

kπ  is the  production rate; i
kτ  is the 

transhipment rate; i
ks   is the rate of transferring the commodity to storage. If no cost is associated with 

the transhipment of the commodity and there is no risk of damage of the transhipment function of the 
node i, then these two balance equations can be replaced by a single one: 

 0i i i i i
k k k k kf f sπ k← →+ − − − =  (2) 

It is worth noting that different commodities can be processed at a single multifunctional node. 
Hence, the balance equations should be satisfied at the node for each of these commodities. 

The in-flow and out-flow rates, ,i i
k kf f← →  are the sums of the flow rates over all edges transferring 

commodity k into and out of the node i, respectively. The production rate of commodity k at a node i is 
expressed as 

 , , ,i i i
k k k n k

n k
π π π

≠

= +∑  (3) 

where ,
i
k kπ  is the supply rate, when the need in another commodity to produce the commodity k is not 

taken into account (usually, at nodes that represent sources of supply of the commodity k outside the 
boundaries of the local infrastructure network under consideration); ,

i
n kπ  is the rate of production of 

the commodity k that involves consumption of another commodity n. It is assumed that there is a 
linear relationship between the amounts of produced and consumed commodities so that 

 , , , ,i i i
n k n k n kπ α k=  (4) 

where ,
i
n kα  is the coefficient relating the production rate of the commodity k to the corresponding 

consumption rate ,
i
n kk , of the commodity n. Thus, Eq. (3) takes the form 

 , , , ,i i i i
k k k n k n k

n k
π π α k

≠

= +∑  (5) 

The consumption rate of commodity k at the node i is formulated as: 

 , , ,i i i
k k k n k

n k
k k k

≠

= +∑  (6) 

where ,
i
k kk  is the rate of consumption of the commodity k to satisfy demand of consumers; ,

i
n kk  is the 

rate of consumption of the commodity k to produce another commodity n.  
In order to be able to take into account the possibility that not all demands are met when 

infrastructure is damaged, the variable ,
i
k kk  is presented as: 

 ,max
, ,i i i

k k k kk k λ= −  (7) 

where ,maxi
kk  is the actual demand rate, i.e., the maximum/required rate of consumption of the 

commodity k at the node i at a given time, а i
kλ  is the rate of unmet demand (or shortage).  

Eq. (7) can then be written as: 

 ,max
, .i i i i

k k k n k
n k

k k λ k
≠

= − +∑  (8) 
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The introduction of storage function even in one of the nodes makes the whole model time-
dependent. The amount of commodity k stored at the node i at time t is denoted as ( )i

k tω   

 ( ) ( ) ,max ,i i i i
k k k kt t t s tω ω ω= − ∆ + ∆ ≤  (9) 

where i
ks  is the rate of change in the amount of stored commodity; t∆  is the time increment and 

,maxi
kω is the maximum storage capacity for the commodity k at the node i.  
Taking into account Eqs. (5) and (8), Eq. (2) can be written as 

 ,max
, , , , 0i i i i i i i i i

k k k n k n k k k n k k k
n k n k

f sπ a k k λ k τ←

≠ ≠

+ + − + − − − =∑ ∑  (10) 

Eq. (2) remains unchanged, while Eq. (3) can be updated in a similar way as Eq. (1) 
In this second equation of Eq. (1) remains unchanged, while Eq. (2) can be updated in a similar 

way as Eq. (1). 

4.  Formulation of the optimization problem 
In the general case the problems related to the optimization of CI operation, can be solved by simple 
sorting of options (when the dimension of the problem is not large), and also by using different 
analytical methods (linear and nonlinear programming, greedy algorithms, etc.). The choice of the 
solving method is not, as yet, formalized and depends on specifics of the problem in consideration. 
The distinction of the developed in the paper method from the existing models is that it permits 
optimizing CI operation according to some risk criteria, and particularly, minimizing the overall cost 
of its operation in each specific case, taking into account possible human losses. In the latter case 
additional members that quantitatively describe the non-materiel losses (loss of limb, life), have to be 
introduced into the optimized cost functional. 
The solution of the model is formulated as a linear optimization problem that minimizes the cost of 
maintaining the network infrastructure at the stage of its operation (or design) as follows: 

 
1

min

(general constraints)
subject to

(bounds on variables)

n

T

u

l u

∈ℜ

≤ ≤
≤ ≤

x
c x

b Ax b
x x x

 (11) 

where х is the vector of variables, c is the objective coefficient vector (i.e., costs); A is the coefficient 
matrix; 1, , ,u l ub b x x  are the vectors of lower and upper bounds on the constraints and the variables, 
respectively. 

Costs C for operating the network infrastructure per unit time within the time interval (t – Δt, t) can 
be expressed as: 

 
( ) ( )

, , ,

,1
,1

2

f e e i i i i
k k k k k k

K e E i V i V

i i ik k k k
i V

c f c c

C
c t t t

π λ

ω

π λ

ω ω

∈ ∈ ∈

=

∈

 + + +
 

=  
  + + − ∆   

∑ ∑ ∑
∑

∑
 (12) 

where , , , ,, , ,f e i i i
k k k kc c c cπ λ ω  are the costs associated with the  flow, production, shortage and storage of 

commodity k per unit of time, respectively; K is the total number of commodities. 
The cost of storage (the last sum in Eq. (12)) is based on the average amount of stored commodity 

within the time interval (t –Δt, t). The total cost can be calculated by substituting Eqs. (5) and (9) into 
Eq. (12), which gives  
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( )

, , ,
, , ,

1 , ,

,
1
2

f e e i i i i i i
k k k k k n k n k k kK

e E i V n k i V

k i i i i
k k k k

i V i V

c f c c
C

c s t c t t

π λ

ω ω

π α k λ

ω

∈ ∈ ≠ ∈

=

∈ ∈

  
+ + + +  

  =
 
+ ∆ + − ∆ 
  

∑ ∑ ∑ ∑
∑

∑ ∑
 (13) 

where the last sum is a constant and should be excluded from the objective function; in order to obtain 
the total cost, including the full cost of storage, this term can be added after optimization.  

The optimization problem can then be formulated as: 

 

, , ,
, , ,

1 ,

min min ,
1
2

f e e i i i i i i i
k k k k k k n k n k k kK

e E i V n k i V

k i i
k k

i V

c f c c
C

c s t

π λ

ω

π π α k λ
∈ ∈ ≠ ∈

=

∈

  
+ = + + +  

  =
 
+ ∆ 
  

∑ ∑ ∑ ∑
∑

∑
 (14) 

 
subject to the following general constraints: 

,max ,max
, , , ,

,max
, , ,

,

0,

,

i i i i i i i i i i
k k k n k n k k k n k k k k

n k n k
i i
k k
i i i i
k k n k n k k

n k

f s i V и k K

f i V и k K

i V и k K

←

≠ ≠

→

≠

+ + − + − − − = ∀ ∈ ∀ ∈

− = ∀ ∈ ∀ ∈

+ ≤ ∀ ∈ ∀ ∈

∑ ∑

∑

π a k k λ k τ k

τ

π a k π

 (15) 

 
and bounds: 

 

max

,

,

,max

,max

0 ;

0 , ;

0 , , ;

0 , ;

0 , ;

, ,

e e
i
k k

i
n k

i
k
i i
k k

i i i
ik k k
k

f f e E

i V и k K

i V и k K и n K k n

i V и k K

i V и k K

s i V и k K
t t

π

k

λ

tt

ω ω ω

≤ ≤ ∀ ∈

≤ ∀ ∈ ∀ ∈

≤ ∀ ∈ ∀ ∈ ∀ ∈ ≠

≤ ∀ ∈ ∀ ∈

≤ ≤ ∀ ∈ ∀ ∈

−
− ≤ ≤ ∀ ∈ ∀ ∈
∆ ∆

  

where max
ef  is the maximum flow capacity of the link e; ,maxi

kπ  is the maximum production capacity 
of commodity k at the node i; ,maxi

kτ  is the maximum transshipment capacity for commodity k at the 
node i. 

Minimizing the total cost separately at each time step does not yield an optimal solution for the 
network performance over the whole time period under consideration. For example, when an 
infrastructure network is undamaged it is obvious that the optimal amount of a stored commodity is 
zero – if everything works properly there is no need for stored commodities because their storage 
incurs additional costs. However, when the network is damaged by a hazard, the availability of 
commodities from storage may reduce the total cost (since there are additional high costs penalizing 
for unmet demand). This problem can be resolved either by artificially setting negative costs for 
storage (that will prevent the use of stored commodities under normal conditions) or minimizing the 
total cost over all considered time increments, i.e., the objective function should become the sum of 
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the costs associated with each time increment. The second approach seems preferable. However, in 
order to use this approach it is necessary to know the time required for restoring the infrastructure to 
its original undamaged condition (as new). 

This time can serve as a good criterion for resilience and strategic readiness of the infrastructure, 
but it can be difficult to predict due to the considerable uncertainty of many parameters. Here, to 
obtain practical results, it may be necessary to use special probability models - fuzzy logic, interval 
probabilistic estimates, etc. 

5.  Accounting for the interdependency of critical infrastructures 
This accounting is very important as from it depends the level of likelihood of modeling results, 
because quite often failures of elements belonging to the same CI or to two and more CI could be 
interdependent. Such dependency between elements of logic-structural CI models can be of two types:  

• failure of one of the elements of a CI changes the operational regime of the whole CI (like, 
when failure of one controlling element changes the operational regime of other elements); 

• when the whole CI in its entirety is exposed to some single random factor (wind, wave 
pressure, snow load, temperature, vibration etc.). 

Specific calculations show that if a simple, without reserve elements and non-renewable system is 
considered, the dependence of the first type does not affect the reliability of the CI as a whole. If the 
CI has reserve elements and is renewable, the second-type interdependence must be taken into 
account. In general, failure to account for the strong dependence of failures in a multi-element CI can 
lead to large errors. Neglecting of dependent failures in series connection elements can lead to a 
significant underestimation of CI reliability. When the elements are connected in parallel, ignoring 
their interdependence leads, on the contrary, to an overestimation of the CI reliability.  

If the operating mode of the CI is characterized by some continuous random variable V (say the 
wind speed) with a known distribution density function f(v), then the reliability of the CI is determined 
by the formula [2]: ( ) ( ) ( )|f vP t P v f v dv= ∫ , where ( )|f vP v  is the conditional reliability of CI, 
provided that V = v. The integral extends over the entire range of possible values of V. 

The larger is the number of reserve elements in the CI block, the higher is the overestimation of its 
reliability due to the neglect of the interdependence of the failures of its elements. 

If the CI consists of elements connected in series and in parallel (only the most important 
components of the CI are duplicated), the neglect of the dependence of the failures can lead to both 
overestimation and underestimation of the reliability of the CI.  

For more complex CIs that do not reduce to purely logical-structural schemes, it is necessary to 
conduct a series of numerical comparative calculations that allow estimating the amount of incident 
damage that depends on accounting for / not taking into account the interdependence of the elements 
of one, two or more CIs for each scenario of the development of an emergency situation. 

6.  Probabilistic analysis of a local interdependent infrastructure system. Real case study 
Analyze, using the described above model, operation of a system which consists of two interdependent 
infrastructures (electricity and water supply) which are located in one of the Russian Far North cities 
(see. Fig. 2) during an extreme winter snow storm with hurricane wind speeds, which occur once in a 
100 years (design event), with simultaneous rise of ambient temperature to levels that produce thick 
icing on the electrical power lines' wires. 
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Figure 2. Local infrastructure network. 
Links: continuous lines-water supply; dashed lines –power lines. 

 
Modeling of the extreme winter snow storm per se is not considered in this paper, because it is a 

standalone problem which belongs to analysis of the consequences of natural forces on ICI structures 
class of problems. It is solved by considering the influence of the joint action of wind, and icing of 
electrical power grid (EPG) wires on the strength, stability and vibrations of the EPG foundation 
structures, supports and wiring of the EPG as a large mechanical system (Timashev S.A., 2016). As 
the result of solving this stochastic mechanics problem the so called fragility curves are produced, 
which connect the physical properties of wind pressure (average speed and variance), ambient air 
temperature, intensity and duration of snow fall, etc., with the probability of any kind of damage of 
EPG supports (warping, capsizing, buckling of individual strut elements, etc.) and wires (sagging, 
contacting of two adjacent wires, wire rupture). 

The probability of failure (PoF) Pf of each EPG element can be assessed as  

 ( ) [ ( ) 0; 0 ]fP t P Y ttt = < ≤ ≤   

where ( )Y t  is the limit state function (LSF) of the EPG element. The LSF actually is the difference 
between the function, which describes the physical load vector on the element and the ultimate 
permissible value of it. 

The local EPG (the first CI) is comprised of four electrical substations--one substation, which is an 
element of the Federal EPG (node 2), with maximal capacity of 20 MW hours/day and three 
distribution substations: nodes 4 and 7, with maximal distribution power of 5 MW hours/day, and 
node 5 with maximal distribution power of 10 MW hours/day. The second CI is comprised of: the 
water filter station (node 1) with maximal distribution power of 1000 m3 drinking water per day; water 
tower (node 3), with maximal capacity 550 m3; and the pumping station (node 6) with maximal 
pumping power of 200 m3/day. For pumping the water they use electricity. It is assumed that to pump 
7,5 m3 of water 1 KW hour of electricity is needed. Water consumers are: hospital (node 8), old age 
home and the surrounding it living quarters (node 9), and living quarters (node 10). Their daily 
consumption of electricity and water are given in Table 1. Nodes and connections between them are 
schematically shown in Fig. 2. 

 
Table 1. Daily demand of electricity and water of CI elements in consideration.  

Consumer Daily demand 
Electricity, MWhour/day Water, m3/day 

Hospital (node 8) 1.3 35 
Old age house & surrounding it 

living quarters (node 9) 3.1 75 

Living quarters (node 10) 6.0 165 
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Two variants were analyzed: 1) CIs without the emergency generators; 2) CI with emergency 
generators in nodes 3, 6 и 8. Each generator of 12 KW power consumes one liter of diesel oil to 
produce 3 KW of electricity and is equipped with an oil tank with capacity of 100 liters. 

In the considered case the expenditures for transportation, storage, production and the products 
deficit are not actual expenditures and are assigned in order to correctly distribute the products 
between the consumers as was intended. In order to prevent usage of the stored products (water and 
fuel) until the moment, when there would be no other source to satisfy the demand, the expenditures 
associated with their storage are set negative. 

In the considered case following decreasing priority hierarchy was established for receiving the 
necessary resources: hospital, old age home, living quarters. The financial, materiel and social 
damages, related to the shortage/absence of water and electricity supply for these consumers are 
established according to the above priorities.   

For the three substations in the case of high voltage wires rupture due to a combination of wind 
pressure and icing following probabilities of failure were obtained: node 4 – 0,4, node 5 – 0,6, and 
node 7 – 0,2. As the substations can be only in two states (operable or failure/switched off), hence, the 
whole network has only 23 states and the probabilities can be easily calculated. Infrastructure will 
operate being partially damaged until the EPG repair is complete, which can take up to several days. 
Results of the probabilistic analysis of the water and electricity supply process to consumers, as an 
illustration, are shown in figures 3 and 4, depending on the time of restoration of the EPG integrity 
(during one –six days, with one day increment). Particularly, the probabilities of delivery to 
consumer’s necessary volumes (i.e., demand) of electricity and water without using the emergency 
generators are given. 

It can be seen, that the interruption in delivering the electricity can start at the very first day. After 
that the percentage of the delivery and the corresponding probabilities do not change for the next six 
days. Interruptions in water delivery during the first day after the incident can take place only in the 
living quarters (node 10), due to the possible failure of electricity delivery for the pumping station 
(node 6). Keeping water in the water tower guarantees it will be delivered in quantities that are needed 
(full demand) to the hospital (node 8) and the old age home, including the surrounding it living 
quarters (node 9). Interruption of water delivery for these consumers may start at the third day and the 
situation gets worse on the sixth day. 

 

 

Figure 3. Probability of delivering electricity to consumers  
(without accounting for the emergency generators). 
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Figure 4. Probability of delivering water to consumers  
during the first six days after the incident occurrence  
(without accounting for the emergency generators)  
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7.  Conclusion 
The results of conducted research are urgent for decision makers, as they allow assessing the 
consequences of made decisions when managing interconnected CI. On a model but real-life example 
of two interdependent infrastructure systems of electricity and water supply during a winter snow 
storm it was shown how the uncertainties related to the damage/downtime of infrastructure elements 
can be accounted for, using variables which describe the originated unsatisfied demand (deficit) and 
the corresponding to it costs or fines.  

The model can be used for studying productivity of interdependent CI (and via it, the resilience) of 
much more complicated interdependent network-type infrastructures, in much smaller time increments 
(every hour, minute or even second, if need be) and consider such parameters as demand and supply, 
production and/or products flow as non stochastic functions of time of random variables, functions or 
fields. 
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