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Abstract. The effect of pressure increase was observed in steam condensation in the 

intermediate coolers of multistage steam ejector. Steam pressure increase for ejector 

cooler amounts up to 1.5 kPa in the first ejector stage, 5 kPa in the second and 7 kPa 

in the third one. Pressure ratios are equal to 2.0, 1.3 and 1.1 respectively. As a rule 

steam velocities at the cooler inlets do not exceed 40...100 m/s and are subsonic in all 

regimes. 

The report presents a computational model that describes the effect of pressure 

increase in the cooler. The steam entering the heat exchanger tears the drops from the 

condensate film flowing down vertical tubes. At the inlet of heat exchanger the steam 

flow capturing condensate droplets forms a steam-water mixture in which the sound 

velocity is significantly reduced. If the flow rate of steam-water mixture in heat 

exchanger is greater than the sound velocity, there occurs a pressure shock in the wet 

steam. 

On the basis of the equations of mass, momentum and energy conservation the 

authors derived the expressions for calculation of steam flow dryness degree before 

and after the shock. The model assumes that droplet velocity is close to the velocity of 

the steam phase (slipping is absent); drops do not come into thermal interaction with 

the steam phase; liquid phase specific volume compared to the volume of steam is 

neglected; pressure shock is calculated taking into account the gas-dynamic flow 

resistance of the tube bundle. It is also assumed that the temperature of steam after the 

shock is equal to the saturation temperature. 

The calculations have shown that the rise of steam pressure and temperature in the 

shock results in dryness degree increase. For calculated flow parameters the velocity 

value before the shock is greater than the sound velocity. Thus, on the basis of 

generally accepted physics knowledge the computational model has been formulated 

for the effect of steam pressure rise in the condensing heat exchanger. 

 

The effect of pressure increasing during the steam condensing into the intercoolers was found out at 

the experimental researches of multistage steam-jet ejector with external intercoolers. A scheme of a 

three-staged ejector is presented on figure 1. 
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Figure 1. A multistage ejector scheme 

 

Primary stream (working steam) comes to the nozzle 1 of the first steam-jet stage. The depression 

is created in the injection chamber 2 due to the expansion of the primary stream. An air-steam mixture 

or just an air is pulled into the injection chamber. Into the diffuser 3, the air-steam mixture in pressed 

and pulled through the transitional branch pipe 4 into the first stage intercooler 5, where it is 

condensed on the pipes 6. Uncondensed steam is entering the second steam-driven stage and further – 

the third stage, after that, it is thrown into the atmosphere. The ejector is equipped by a measurement 

scheme, which gives an opportunity to determine pressures and temperatures in the injection chambers 

and diffuser outlets for each stage, temperatures of cooling water upstream and downstream each 

cooler. The pressure is measured with δр = 0.25% uncertainty; temperature uncertainty was Δt=0.4°С. 

The steam flow rate is determined according to the steam pressure from the nozzle calculation; the air 

flow rate is set by a flow rate diaphragm at the ejector input. 

At the figure 2 results of measurements for steam (air-steam mixture) pressures difference ΔР = 

Рoutlet – Рinlet of intercooler inlet and outlet are presented. 
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 Figure 2. Steam (air-steam mixture) pressures difference of intercooler inlet and outlet 

 

For the first stage, the air-steam mixture pressure at the intercooler inlet is lower for 2,7 kPa 

(maximum), than at the outlet (ΔРmax = 2.7 kPa), for the second stage - ΔРmax = 6.9 kPa, for the third 

stage - ΔРmax = 10,9 kPa. 

At the figure 3 the pressure differences (pressure drop δР = Рoutlet / Рinlet) in the first, second and 

third stage intercoolers for one ejector working mode are presented. The pressure drop in the first 

intercooler reaches δР = 2,08; in the second intercooler – δР = 1,28; in the third intercooler is in the 

range of δР=1,07…1,12. 

 

 
 

Figure 3. Pressure drop in the intercooler 

 

For the explanation of the effect, a number of hypothesis are considered: a condensation drop; a 

thermal drop; a diffuser effect, consisted in geometric, thermal and flow rate factors simultaneously; a 

wet steam pressure drop [0,0]. A condensation drop in the stream is implemented in the presence of 

high supersonic velocities (M>>1). The steam velocities at the diffuser outlet (intercooler inlet) 

reaches, as usual, 60-100 m/s, except of the mode without the secondary stream (when an air flow rate 

G=0 kg/s). In this mode, the pressure in diffuser outlet had reached 1,4 kPa (in the injection chamber 

P1=0,7 kPa) and the stream velocities at the diffuser outlet – about 450 m/s. However, at all the 

modes, the velocity of the stream in the diffuser outlet is subsonic. For the thermal drop 

implementation in following experimental conditions (a pressure drop), the temperature decreasing for 

a steam (an air-steam mixture) should be about 250-300 K. Experimental values of a superheated 

steam temperatures at the diffuser outlet were exceeding the value of steam saturation temperature for 

80-100 K. At last, the integrated diffuser effect leads to the steam pressure increasing. However, at 

following experimental parameters, the pressure increasing is several times lower, than it was fixed in 
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the experiment. Consuming all said above, the implementation of thermal or condensation drops, or 

diffuser effect for the experimental conditions – is impossible. 

For the explanation of the fixed effect, the most suitable hypothesis is the pressure drop in the wet 

steam. Probably, the steam (air-steam mixture), getting into the heat-exchanger, breaks the condensate 

film, flowing down from the vertical tubes. At the same time, the steam catches and breaks condensate 

drops and jets, which are flowing down from the highest intermediate partition. At the heat-exchanger 

inlet, the gas-steam-water mixture (mist) is appeared.  It is known [1], that the sonic speed in the wet 

steam is decreased extremely. The stream becomes supersonic in the intercooler inlet and a pressure 

drop in the wet steam appears. So, when the wetness calculation at the intercooler inlet show the Mach 

number M > 1,0, it means that the hypothesis of the pressure drop inside the intercooler is correct for 

the explanation of the fixed effect. 

For a mathematic formulation of the process describing model, we are going to make several 

assumptions and additions, basing on the parameters measuring results: 

The air-steam mixture at the heat-exchanger inlet is superheated, relating to the saturation 

temperature, which is devoted to the mixture pressure. In the heat-exchanger inlet, the mixture is 

cooled and a part of moisture is evaporated. 

The temperatures upstream and downstream the drop are corresponding to the saturation 

temperatures at the mixture pressures. 

Drops impulse velocities are close to the gas phase velocity (sliding is absent). 

Liquid phase specific volume is neglected comparing to the gas specific volume. 

The Clapeyron equation is applicable for the gas phase. 

The pressure drop is calculated taking into account the pipe bunch gas-dynamic resistance. It is 

connected with the fact, that the mixture pressure is measured downstream the intercooler, when the 

pressure drop takes place in the intercooler entrance (according to the authors assumption). 

 

The mass, momentum and energy conservation equations are written down, using [1]: 
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Into equations (1) – (3), using indexes “1, 2” the environment parameters upstream and 

downstream the drop are designated; «c, a, s» – parameters of condensate (moisture), air and steam; 

double indexes are related to double-component mixture: «sa» – steam and air (gas component), «cs» 

– condensate and steam. The variables indexes are: w – velocity; Т, Р – temperature, pressure; ρ – 

component density; r, h – phase transition heat, heat content; β – component weight quota.  

In the equations (1) – (3), the unknown variables for provided experiments are the moisture quota 

upstream and downstream the drop, and also the stream velocity downstream the drop. The equations 

set is solved by the iteration method. 

The sonic speed in the gas-steam-water mixture is determined by equation (3). 

a sc

2 2 2

mix a a sc sc

1
mix

v v

a a a

 
    

     , (4) 

where а  – sonic speed; ρ – density; v – component volume fraction; indexes: mix, a, sc – mixture, 

air, steam-condensate; ρmix = ρa·va+ ρsc·vas. 
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The sonic speed in the wet steam was determined by the diagram [1], figure 4. 

 

Figure 4. The dependence of the sonic speed in the double-phase environment (αsc) from the 

steam temperature for various wetness of water steam mixture (x) [0] 

 

The results of the Mach number calculation upstream and downstream the pressure drop are 

presented at figure 5. As it is clear from the figure, for all the intercoolers, the Mach number upstream 

the pressure drop is M > 1. This means, that the hypothesis, explaining the pressure drop in the 

intercoolers is correct. 

According to the solutions of the equations (1) – (3), steam wetness for the first stage is х < 0.75 at 

various operating moods of the ejector. For the second and the third stages it is х < 0.09. The steam 

wetness doesn’t change considerably with the drop. For the wet steam formation, in compliance with 

(1) – (3) equations, it is required 10% of moisture, which is located on the intercooler tubes as the 

condensate drops.  
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Figure 5. The Mach number upstream and downstream of the pressure drop 

а. – first stage; б – second stage; с. – third stage
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Conclusion 

The effect of the steam (air-steam mixture) pressure increasing in the intercoolers of the tree-staged 

steam-driven ejector is fixed during the experimental research. The pressure drop in the intercoolers 

reaches 2,7 kPa for the first stage, 6,9 kPa – for the second stage, 10,9 kPa – for the third stage. 

For the explanation of the fixed effect, a hypothesis is suggested. At the heat-exchanger inlet, the 

air-steam mixture stream breaks the drops of the condensate, which is flowing down from the tubes, 

and also divides the jets of the, flowing from the lowest intermediate partition, condensate into drops. 

At the heat-exchanger inlet, the gas-steam-water mixture (mist) is appeared. As the sonic speed in the 

wet steam is decreased extremely, comparing to a single-phase stream, at the heat-exchanger inlet, the 

stream becomes supersonic. A pressure drop appears. 

Basing on the formulated hypothesis and also several assumptions, equations of the mass, 

momentum and energy balances are made. As a result of set of equations solving, it is determined that 

the mixture velocity upstream the drop is supersonic for experimentally gotten values of the gas-water 

steam mixture upstream the heat-exchanger. 

To authors mind, suggested hypothesis of the formation of double-phase double-component 

mixture in the heat-exchanger inlet explains fixed effect of the pressure drop in the multistage steam-

driven ejector intercoolers correctly. 

Results, provided in the paper, cause the necessity of the multistage steam-driven ejectors design 

methodic reviewing. An additional investigation of such apparatuses is necessary. 
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