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We have developed the theory of spin transport transverse to the interface in metal/ferromagnetic insulator 
hybrid structures under the spin Seebeck effect conditions. We have calculated the deviation of the conduction 
electrons spin temperature from equilibrium under conditions of saturation of resonance interaction between the 
electrons and a sound wave field. We have demonstrated that the conduction electrons spin subsystem, when ex-
cited under the above conditions, generates a spin-wave current in a nonconducting ferromagnetic of the met-
al/ferromagnetic insulator hybrid structure being in a nonuniform temperature field. In addition, the spin-wave 
current generation in the ferromagnetic has a resonance nature. We have analyzed the approximation of effective 
parameters, when each of the considered subsystems (conduction electrons, magnons, and phonons) is character-
ized by its effective temperature. 

PACS: 43.20.Fn Scattering of acoustic waves; 
43.20.Ks Standing waves, resonance, normal modes; 
43.20.Tb Interaction of vibrating structures with surrounding medium; 
43.25.Gf Standing waves; resonance; 
43.35.Xd Nuclear acoustical resonance, acoustical magnetic resonance. 
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Introduction 

Thermoelectric and thermomagnetic effects reflect the 
relationship between charge and heat currents, and as 
turned out, may cause spin effects. The spin Seebeck effect 
(SSE) observed in Ni81Fe19 crystals was the first step to 
open a new direction in spintronics — studying the influ-
ence of thermal perturbations on spin effects [1,2]. After-
wards, the SSE could be observed in various materials, 
both semiconductors (Ga,Mn)As [2] and metallic ferro-
magnets Co2MnSi [3]. Later, other spin effects have been 
discovered: the Nerst effect, the spin Peltier effect, etc. 
[4–9]. Thus, spintronics that investigates charge- and 
heat-current interaction initiates a new field of research 
in physics — spin caloritronics [10,11]. Spin effects in 
isolating magnetic materials under the influence of ther-
mal perturbations, were studied in [12–15]. 

The SSE’s investigation results proved to be unexpected 
in the context of a nonmagnetic conductor  LaY2Fe5O12 
magnetic insulator system [16,17]. The SSE measurements 
have been taken using the inverse spin Hall effect (ISHE). 

Against conducting crystals where the transfer of the spin 
angular momentum is due to band charge carriers, in non-
conducting magnetic materials the spin Seebeck effect can 
be realized by exciting a localized spin system. For SSE, the 
angular momentum transfer is driven by a spin-wave current 
(spin wave) underlain by excitations of the localized spin 
subsystem (magnons). Since spin waves relax weakly 
enough, the spin-wave current propagates far greater dis-
tances than the electron spin current. This circumstance 
promises possible practical applications of the effect [18,19]. 
Being in thermodynamic equilibrium, the magnons are de-
scribed by the Bose–Einstein distribution function. A non-
equilibrium magnon distribution induced by a thermal gra-
dient causes the momenta to distribute chaotically and never 
provides the spin-wave current. The spin-wave current exci-
tation requires producing a nonequilibrium but “coherent” in 
momentum direction magnon distribution. Such a distribu-
tion can be formed, for example, as a result of inelastic elec-
tron scattering by localized magnetic impurity centers near-
by the structure interface. Let the spin-polarized distribution 
of conduction electrons in a nonmagnetic metal (the spin 
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accumulation) be obtained in that or other way. Then, the 
magnon creation process dominates the annihilation process 
as the localized magnetic momenta scatter the electrons 
inelastically. In this case, the magnon distribution generates 
the spin-wave current. As a rule, the spin Hall effect is used 
to give rise to the spin accumulation [20]; its effectiveness 
depends on the magnitude of the spin-orbital interaction in a 
conduction electron system. That is why platinum whose 
spin-orbital interaction is high enough needs to apply. 

Spin currents are quite difficult to detect or generate. At 
first, detections of spin currents have been carried out by 
indirect methods, by measuring the effects accompanied 
with the spin current generation. So, the work [21] uses 
optical methods to measure the spin accumulation occur-
ring on the lateral surfaces of the sample when generating 
the spin current in spin-Hall systems. Subsequently, the 
inverse spin Hall effect has been proposed as an electrical 
method of detecting the spin currents [20,22,23]. The es-
sence of this method is based on inducing a voltage by the 
spin current against the background of the spin-orbital in-
teraction [18,24]. For the first time such a spin current de-
tection method has been demonstrated in the work [25] and 
has actually become the main method of detecting spin 
currents [26–28]. Searching and development of new 
methods of spin-current generation are of current interest. 

Among other methods which can bring the conduction 
electron subsystem to the spin-polarized state, resonant ones 
should be mentioned. Resonant methods implementation for 
generating electron spin current in magnetic insulator non-
magnetic metal structures was studied in [26,29]. The meth-
od is about resonant excitation of localized moments system 
by alternating external fields of different nature and an elec-
tron spin current generation in the nonmagnetic metal at-
tached to the magnetic insulator. This way provides the spin 
current without transferring spin-polarized charge carriers 
through the interface in the hybrid structures. As such, the 
approach avoids the mismatch problem [30–33] that pre-
vents to obtain high spin polarization values by injection of 
spin-polarized electrons. Electron spin current excitation 
under acoustic resonance conditions was studied in [34,35]. 
It is of interest to study the implementation of the resonant 
method for spin accumulation creation under SSE conditions 
in metal/magnetic insulator/metal structures. Such a resonant 
scenario can be possible to implement in the event of taking 
the spin-orbital interaction (SOI) into account. SOI couples 
the kinetic (translational) and spin subsystems of conduction 
electrons, therefore, it can be regarded as one of the possible 
channels to act on one of the subsystems via another, for 
example, on the spin subsystem of conduction electrons via 
the kinetic subsystem and vice versa. Due to the translation-
al and spin motion locking, the quantum transitions cannot 
be conventionally divided into pure configurational (orbital) 
and pure spin ones. We can talk only about either predomi-
nantly configurational or predominantly spin transitions. But 
this circumstance significantly changes the conditions for 

the excitation of different transitions. Namely, the electrical 
component of an electromagnetic field initiates the spin 
transitions, and the magnetic component — the orbital ones. 
The spin-orbit interaction gives rise to resonant electron 
transitions at frequencies being linear combinations of the 
cyclotron and Zeeman frequencies. Besides, such transitions 
can exist at the antinode of both electric and magnetic fields. 
Such resonance is known as the combined Rashba resonance 
[36–39] and observed in a number of compounds. 

There are other possible perturbations causing the reso-
nance, for example, the interaction between conduction elec-
trons and a sound wave field. The sound wave propagation 
in a crystal is accompanied with excitation of an electro-
magnetic field with potentials ( , )tϕ x  and ( , )tA x  and cor-
responding strengths of the electric and magnetic fields. In 
this case, the kp model Hamiltonian of the perturbation the-
ory for a crystal in the sound wave field, in general, contains 
a number of summands: the interaction of electrons with the 
scalar potential and an alternating magnetic field of the ac-
companying electromagnetic wave; the spin-orbital interac-
tion of electrons with an electric field E that accompanies 
the sound wave [40]; the spin-independent deformational 
interaction of electrons with the displacement field [41]; the 
spin-dependent deformational interaction [40], etc. Along 
with this, there are a few spin interaction mechanisms when 
the sound wave or the corresponding electromagnetic wave 
modulates the interaction between kinetic and spin degrees 
of freedom. The mechanisms listed above differ from each 
other not in the interaction intensity but in the line widths 
and resonant frequency positions. The works [42,43] 
demonstrates that the interaction between conduction elec-
trons and a sound wave field also causes a spin current. It 
should be here noted that the paper [44] shows experimen-
tally that the response of the spin electron subsystem (analo-
gous to the spin Hall effect), when interacted with the sound 
wave field, has a resonant nature. 

It can be said that the basic mechanisms involved in the 
spin absorption of ultra-sound by free electrons in crystals 
are: the modulation of the dipole-dipole interactions of 
electron spins by sound [45]; the interaction of electron 
spins with an alternating magnetic field accompanying the 
sound wave [45]; the sound modulation of the interaction 
between spin and kinetic degree of freedom of conduction 
electrons in crystals without inversion centers [36]; the 
sound modulation of the spin-orbital interaction between 
electrons and a crystal lattice [46,47]. The mechanisms 
mentioned above differ from each other not in the interac-
tion intensity but in the line widths and resonant frequency 
positions. In general case, the interaction of conduction 
electrons with sound has a resonant nature. The resonance 
occurs when the sound frequency ω  and the spin preces-
sion frequency sω  coincide. A similar picture can be ob-
served at other frequencies being a linear combination of 
the Zeeman sω  and cyclotron cω  frequencies. Against 
the paramagnetic resonance (PR), the acoustic spin reso-
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nance (ASR) can be observed both in the longitudinal and 
in the transverse polarization of sound waves. 

Thus, taking SOI into account leads to resonance influ-
ence on electron spin subsystem, without affecting local-
ized spin subsystem. It is also result in electron spin polari-
zation which is nessesary for realization SSE in resonance 
saturation conditions in such kind of structures. Correct 
description of the thermal perturbation is the other im-
portant question in the thermal effects analyzing. There are 
few possible ways for taking such perturbations into ac-
count. The response of a weakly nonequilibrium system on 
a thermal type perturbation can be represented as a Fourier 
transforms of the time correlation functions of the opera-
tors for corresponding flows with statistically equilibrium 
system state [48]. The admittances of this type structure is 
similar to the expressions for kinetic coefficients, emerging 
in the equilibrium systems theory as a reaction on mechan-
ical type perturbation, which are representable in the form 
of an additional summand in the Hamiltonian of the sys-
tem. Sometimes the reaction on thermal perturbations is 
found using indirect methods by putting in fictitious exter-
nal forces acting on the system similarly to thermal pertur-
bations [49]. The response to a thermal perturbation can be 
calculated using Onsager hypothesis [50] on the nature of 
the decay of fluctuations or using local equilibrium distri-
bution as an initial condition for the finding of a statistical 
operator of the system [51]. Universal description of the 
response of weakly nonequilibrium systems on thermal 
type perturbations gives the nonequilibrium statistical op-
erator method (NSO) [52]. The method allows us to calcu-
late the response to an external perturbation not only of the 
equilibrium, but also of strongly nonequilibrium systems. 

In the present work, the influence of resonant interaction 
of conduction electrons with the sound wave field on spin-
wave current generation in ferromagnetic part of the met-
al/ferromagnetic insulator system is described using NSO 
method for thermal perturbations describtion. The paper is 
organized as follows. In the first part the model of interest is 
formulated, the Hamiltonian of the system is described and 
the basic operators with its dynamics equations are intro-
duced. Exchange interaction is considered to be the only 
mechanism responsible for electron spins relaxation on the 
localized spins near the interface. Magnon-phonon interac-
tion is considered to be an additional way for magnons to 
scatter. The construction of both nonequilibrium entropy 
operator takes into account the thermal perturbations of the 
system and NSO is included to the second part of the work. 
The third part contains the analysis of macroscopic equa-
tions describing spin-thermal effects. 

Hamiltonian 

In our case, the problem of the spin-wave generation to 
be solved reduces to building and analyzing a set of mac-
roscopic equations for two interacting spin subsystems: the 

conduction electron subsystem ( )z ts〈 〉x  and the subsystem 
of localized spins of an insulator ( ) .z tS〈 〉x  Here 

 1= Sp ( ( ) ), = ( ) [ , ],tA t A A i A H−ρ 

   

 ( ) = { , ( )}, { , } = ( )/2i i
i

A A A B AB BAδ − +∑x x x , (1) 

where ( )tρ  is the nonequilibrium statistical operator (or 
the density matrix), H  is the Hamiltonian of the system 
considered, 

 = .e sF m p sm mpH H H H H H H+ + + + +   

The system of conduction electrons in a normal metal is 
described by the Hamiltonian eH  

 
2

= { ( ) ( )}, ( ) = , ( ) ,
2

j
e k s k j

j

p
H dx H H H

m

  + δ − 
  

∑∫ x x x x x   

 ( ) = ( )z
s s j j

j
H s− ω δ −∑x x x

. (2) 

Here ( ), ( )k sH Hx x  are the density operators of kinetic and 
spin energies of electrons; z

js  and jpγ  are the spin and ki-
netic momentum operator components of the jth electron, 
respectively; 0= /s sg Hω µ   is the Zeeman precession fre-
quency of free electrons in an external magnetic field 

= (0,0, )HH ; 0,sg µ  are the effective electron spectro-
scopic splitting factor and the Bohr magneton, respectively. 

The spin interactions between electrons and a sound 
wave 

 ( , ) = ( )ei x i tt + ω∑ q

q
u x u q   

( = ,ω sq s  is a sound speed, q is a wave vector) can be 
represented as follows: 

 ( ) = ( ) ( )e ( ),n i i t n
sF i

in
H t u T− ω

−Φ∑
q

q q q  (3) 

where ( )n
i

−
−Φ q  are matrices characterizing the interaction 

intensity. The tensor operators ( )nT q  depend on the group 
indices 1= ( , , )n µ α   running values of ( , ,0)+ − : 

 , , 11( ) = ( ) = { ,e }
iqxn j

j j
j

T T s pαµ α µ∑q q 


.  

The explicit form of the operator ( )nT q  is defined by a 
particular structure of the crystal. Each of the operators 
corresponds to a single certain line of the acoustic spin 
resonance. For definiteness, the operator ( )nT q  is thought 
to coincide with the Fourier-component of the spin distri-
bution density [40] 

 ( ) = { ,e } = ( )
iqxn j

j
j

T s sµ µ∑q q . (4) 
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Such a type of interaction between sound and spin degrees 
of freedom of conduction electrons can be realized in crys-
tals of Si, Bi, GdS, etc. 

The Hamiltonian mH  for the magnetic subsystem is of 
a sum of the exchange ( )SSH x  (over the nearest neigh-
bors) and Zeeman energies ( )SH x  of the localized spins, 

 = { ( ) ( )},m SS SH d H H+∫ x x x  (5) 

 = , = .z
SS j j S m j

j j
H J S S H S+δ

δ
− − ω∑ ∑

  

J is the exchange integral, 0= / .m mg Hω µ   
Going over to the creation b+

ν  and annihilation bν  
magnon operators [54], we transform the Hamiltonian of 
the localized spin subsystem. Treating the magnon gas as 
free, we have  

 
2 2

*
= ( ) , where ( ) = .

2
m k k

k

kH k b b k
m

+ε ε∑    

The above expression can be interpreted as a sum of 
energies of the quasiparticles — magnons, having the 
quasimomentum k with its effective mass *m  and magnon 
momentum [55]. 

The main mechanism of the spin scattering of the con-
duction electrons implies the exchange interaction with the 
localized spins located nearby the interface ,smH  

 0= ( ) ( ) ( ),sm j j
j

H J d− δ −∑∫ xs x S R x R  (6) 

0J  is the exchange integral, ( )jS R  is the operator of a 
localized spin with the coordinate jR  at the interface, 

( )pmH x  is the energy density operator of interaction be-
tween the localized spins and phonons. 

pH  is the lattice Hamiltonian 

 = ( ),p pH d H∫ x x   

where ( )pH x  is the energy density operator for the pho-
non subsystem. The explicit form of which is not necessary 
for the following calculations. 

We find an explicit expression for the statistical opera-
tor (or the density matrix) ( )tρ  using the nonequilibrium 
statistical operator method. By [42,43,52,53], in the linear 
approximation in deviation from equilibrium ( )tρ  can be 
written as 

 

0 1
11 0 1 1 0 0

0

0 0

( ) = ( ) e ( , ) ,

(7)
( ) = exp{ ( )}, = exp{ }.

t
q

q

t t dt d S t t t

t S t S

ε τ −τ

−∞
ρ ρ − τρ + ρ ρ

ρ − ρ −

∫ ∫ 

 

Here, ( )q tρ  is the quasi-equilibrium statistical operator, 
0 0= ( )e m p sm mpS H H H H HΦ + β + + + +  is the entropy 

of the equilibrium system, 1 = T−β  is the equilibrium tem-
perature of the system; ( )S t  is the entropy production op-
erator. 

It should be noted that to implement resonant transitions 
at the combined frequencies, we should expect both the ki-
netic and spin subsystems of conduction electrons to be un-
balanced. However, in the case of resonance at the spin fre-
quency, only the conduction electron spin subsystem 
absorbs energy from the external field. In addition, the con-
duction electron kinetic subsystem appears to deviate but 
slightly from equilibrium. Therefore, under the spin reso-
nance saturation conditions, it suffices to view the evolution 
of two spin subsystems: the conduction electron subsystem 
and the localized spin subsystem. The nonequilibrium state 
of our system can be then described by determining the av-
erage energies of the subsystems ( ), ( )s m  or their conjugate 
inverse effective temperatures ,s mβ β . In other words, this 
fits the case of establishing the internal equilibrium inside 
each of the subsystems at a rate far greater than the energy 
exchange rate between them. The temperature 1=p pT −β  
corresponds to the phonon subsystem. Earlier, we have ex-
ploited an analogous approach to describe the spin Hall ef-
fect in hybrid structures [42,43]. 

So, the entropy operator corresponding to the non-
equilibrium state of the system can be written in terms of 
the average density values as follows: 

 ( ) = ( ) { ( , )( ( ) (1/2) ( ))s s smS t t d t H HΦ + ∆ β + +∫ x x x x   

 ( , )( ( ) (1/2) ( ) (1/2) ( ))m m sm pmt H H H+ β + + +x x x x   

 0( , )( ( ) (1/2) ( ))} = ( ),p p pmt H H S S t+ β + + δx x x   

 0 0 0= , . . . = Sp ( . . . )A A A∆ − 〈 〉 〈 〉 ρ , (8) 

( )tΦ  is the Massieu–Plank functional. 

Microscopic equations 

Let us calculate the density of the electron spin current  

 1
( ) ( )( ) = ( ) [ ( ), ] = ( ) ( , )z z z z
sm sF

d s i s H s s t
dt

− +x x x x 
 ,  

 1( ) = ( ) [ ( ), ]ik ikA i A H−x x

 . (9) 

The collisional expression ( ) ( )z
sms x  is governed by inelas-

tic scattering of the electrons by the localized spins. These 
processes are accompanied by the creation and annihilation 
of magnons 

0
( ) ( ) = { ( ) ( ) ( ) ( )} ( ).z
sm i i i

i

iJ
s d s S s S+ − − +− δ −∑∫x x x R x R x R



  

  (10) 

The last summand on the right-hand side in (9) is responsi-
ble for the change in the spin current due to the electrons 
absorb energy of the sound wave. 
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The equation of motion for the magnetic subsystem is 

 ( ) ( )( ) = ( ) ( ) ( ).m H m sm m pmm
H I H H−∇ + +x x x x    (11) 

Here ( ) = { / , ( )B i i
i

I B p m δ −∑x x x  is the flux density op-

erator (for magnon energy in this case). The rest of the 
terms on the right-hand side of the equation are responsible 
for the interface-magnon and phonon-magnon scattering 
processes. 

Ultimately, the equation of motion for the lattice sub-
system has the form 

 ( )( ) = ( ) ( ).p H p pmp
H I H−∇ +x x x   (12) 

Given the explicit form of the equations of motion, we can 
come to an expression for the entropy operator. Integrating 
by parts the terms containing the divergence of fluxes and 
discarding the surface integrals, we represent the entropy 
production operator as follows: 

 ( ) = { ( ) ( , )H mm
S t d I t∆ ∇β +∫ x x x   

 ( ) ( , ) ( , )H p sFp
I t H t+ ∇β + β +x x x   

 ( ) ( )( , )(1/2) ( ) ( , )(1/2) ( )p p pm s s smt H t H+β + β +x x x x    

 ( ) ( )( , )(1/2)[ ( ) ( )]}.m m sm m pmt H H+ β +x x x   (13) 

Macroscopic equations 

At first, we insert the entropy production operator (13) 
into the expression for the nonequilibrium statistical opera-
tor (7). Then we average the operator equations (9), (11) 
using NSO and find macroscopic equations having the 
meaning of the local laws of conservation of the energy 
density of the subsystems ( ), ( )s m . We get 

 ( ) ( )( ) = ( ) ( ) ,
t t tz z z

sm sFs s s+x x x    (14) 

( ) ( )( ) = ( ) ( ) ( ) .
tt t tz z z

z sm mpS
S I S S−∇ + +x x x x     

  (15) 

Equations (14), (15) describes the change in density of 
the spin magnetization of the electronic and magnetic sub-
systems due to the following processes: diffusion (the first 
summand on the right-hand sides of the equation) 

0
11 1 1( ) = e {( ( ), ( , )) ( , ))tt

mz z zS S S
I d dt I I t t tεα α λ λ

−∞
〈 〉 ∇β + +′ ′ ′∫ ∫x x x x x

 
 1 1( ( ), ( , )) ( , )}.pz HS p

I I t t tα λ λ+ ∇β +′ ′x x x  (16) 

Relaxation terms in the equations are 

 
0

1( ) 1 ( ) ( ) 1( ) = e ( ( ), ( , ))tt
jn jn jnA d dt A A tε

−∞
〈 〉 ×′ ′∫ ∫x x x x     

 1( , ), = , ; = , ; = , .z z
j t t A s S j s m n m p× δβ +′x  (17) 

Here 

   
1

/ /
0

0
( , ) = , ( ) , ( ) = e e .itH itHA B d A B i B t B −τ ∆ ∆ βτ∫  

   

  (18) 

The last term in the expressions for the spin-wave current 
(14) deals with the power absorbed by the conduction elec-
trons as the sound wave propagates in the crystal. In ac-
cordance with [43], the average power sQ , absorbed by 
the electrons is given by  

0
2 2 ( )= | ( ) ( ) | Re e ( ( ), ( , )).i t i

s i
i

Q u dt T T t− ε− ω + −
−

ω −∞
ω Φ −∑ ∫

q
q q q q

  (19) 

The general conclusions about the frequency spectrum 
structure, the resonance line width, and the possibility of 
observing the resonance can be considered from the 
Green’s function 

 ( )11 1 1( , ) = ( )e ( ( , ), ( , )) =t tn n nG t t t t T t T t− ε −− θ − −q q q   

 ( )1e ( , )
2

i t t nd G
∞

ω −

−∞

ω
= ω

π∫ q . (20) 

Composed as a chain for the Green function, coupled equa-
tions of motion can be formally solved in the Bohr approx-
imation in interaction with scatterers in this way 

 ( ( ), ( ))( , ) = .
( , ) ( )

n n
n

n
n

T TG
M i

− −
ω

ω + ε + Ω − ω
q qq

q
 (21) 

The real part of the mass operator Re ( , ) = ( , )n nM ω Γ ωq q  
holds for the width, and the imaginary one Im ( , )nM ωq  — 
for the resonance line shift due to the electron diffusion and 
the electron-lattice scattering. After neglecting the resonance 
frequency shift, we have 

 2 2
2 2

( ( ), ( )) ( , )= | ( ) ( ) | .
( ( , )) ( )

i
s i

s

s sQ u
+ − ±

−
− ±

ω

− Γ ω
β ω Φ

Γ ω + ω − ω
∑
q

q q qq q
q

  

  (22) 

The line width up to the terms 2q  and in the Bohr ap-
proximation in electron-lattice interaction appears as 

 ,( , ) = ( , ) ( , )q q Dα γ ±
α γΓ ω ν ω + ωq q q , (23) 
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where ( , )ν ωq  is the known formula for a relaxation fre-
quency of transverse electron spin; it defines the line width 
of the paramagnetic resonance [56]: 

 
1( , ) =

( ( ), ( ))s s+ −ν ω ×
−

q
q q

  

 
0

( ) 11 ( ) ( ) 1Re e ( ( ), ( , )),i t
sm smdt s s tε− ω + −

−∞
× −∫ q q    (24) 

and , ( , )D±
α γ ωq  is the diffusion tensor of transverse com-

ponents of the spin magnetization  

 ,
1( , ) =

( ( ), ( ))
D

s s
±
α γ + −ω ×

−
q

q q
  

 
0

( ) 11 1Re e ( ( ), ( , )).i t
s s

dt I I tε− ω γα
+ −

−∞
× −∫ q q   (25) 

The diffusion tensor components involved in the line width 
of the acoustic spin resonance (23), as can be noticed, are 
the Green functions ( , )nkG ωq  (for = 0).q  By analogy 
with (21), the latter, in turns, can be represented with their 
damping and diffusion coefficients. Finally, the correlation 
functions ( ( ), ( ))s s+ − −q q  are proportional to the static 
paramagnetic susceptibility of electron [56] 

 
2

0( )
( ,0) = ( ( ), ( )).

2
s

s
g

s s+ −β µ
χ −q q q   

Equations (14), (15) and the kinetic coefficients (16), (17) 
solve the problem of macroscopic description of the 
nonequilibrium spin subsystems in terms of average mag-
netization densities. 

Let energy flux be stationary between the subsystems. 
We average the equations over time. As a result, the set of 
the Eqs. (14), (15) acquires the form 

 ( )( ) ( ) = 0,sm s sm sL Qδβ +x x   

 ( ) ( )( ) ( ) ( ) ( ) = 0,ms m sm mp m mpL Lδβ + δβx x x x   

   
0

( ) ( ) ( )( ) = e ( ( ), ( , ))t
i jk i jk i jkL d dt H H tε ′

−∞
′ ′ ′ ′∫ ∫x x x x  , (26) 

where =ik i kδβ β − β . 
From (26) it follows that if the phonon subsystem is 

slightly unbalanced pβ β  (the uniform case), the spin-
wave current in the magnetic insulator (the magnetization 
is unbalanced as )z

mSδ δβ  depends resonantly on the 
frequency of the external field and is given by 

 ( ) 2 2
2 2

( )
| | .

( ( )) ( )
m mp sz i s

i
m s s

S u−
−

ω

βτ χ ν ω
δ ≈ ω Φ

χ ν ω + ω − ω
∑   

  (27) 

Here mχ  is the static susceptibility of the localized spins, 
1
( )m mp

−τ  is the magnon-phonon relaxation frequency 

 
0

1 1 1( ) 1 ( ) ( ) 1= ( , ) e ( , ( )).tz z z z
m mp mp mpS S dt S S tε− −

−∞
τ ∫     

Thus, the resonance energy absorption of a sound wave by 
conduction electrons in the metal causes the deviation of 
the magnon subsystem of magnetic insulator from the 
equilibrium state also in a resonant manner. In met-
al/magnetic insulator/metal structures spin Seebeck effect, 
observed by converting the injected spin-wave current 
from dielectric to the charge one by the inverse spin Hall 
effect [22], in the nonmagnetic metal (Pt) attached to the 
magnetic insulator behave in a resonant manner under 
studied above conditions. 

Conclusions 

In this paper, we have proposed and developed the new 
method of spin-wave current generation in the magnetic 
part of the metal/ferromagnetic insulator hybrid structures. 
It is based on resonance excitation of conduction electron 
spin subsystem by sound wave field followed by the mo-
mentum transition to the ferromagnetic insulator due to 
exchange interaction. We have developed the microscopic 
theory of spin transport under conduction electron spins 
subsystem resonance excitation and thermal perturbation 
of the magnetic subsystem conditions. We have demon-
strated the proposed excitation method to create a 
nonequilibrium magnon accumulation at the interface and 
to lead to the spin-wave current resonance generation in 
the magnetic insulator. The explicit forms of the kinetic 
coefficients as correlation functions determining both dif-
fusion and relaxation processes were found. In met-
al/magnetic insulator/metal structures under studied condi-
tions spin Seebeck effect occure in a resonant manner. 
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Appendix 

The operators ( )nT q , in the definition of Green's func-
tion satisfy the equation of motion 

 1( ) = ( ) [ ( ), ] =n nT i T H−q q

   

 ( )( ) (1/ ) ( ) ( )n k nk n
n vi T i m T T−= − Ω + +q q q q .  
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Here 

 1
( ) ( )( ) { ,e }, ( ) = ( ) [ ( ), ],i xn k n nii v vi

i
T s p T i T Hµ −≡ ∑ qq q q

   

nΩ  are the precession frequencies of ( )nT q  in magnetic 
field, being resonance ones of acoustic resonance; 
(1/ ) ( )nkm T q  describes a diffusive flow of inhomogeneous 
distribution, ( )nT q , а ( ) ( )n

vT q  determines the rate of change 
of the values during interaction of the electrons with the 
lattice. Green’s functions satisfy the chain of equations 

 1( ( ) ) =ni G I GΩ − ω + ε − ,  

 1 1 2( ( ) ) = ,ni G I GΩ − ω + ε +  (28) 

where 

 = ( ( ), ( ))n nI T T − −q q ,  

 1 ( )= ( ( ), (1/ ) ( ) ( )),n k n k n
vI T i m T T− − −− − + −q q q q   

 ( ),nG G≡ ω   

0
( )

1 ( )e ( ( ), (1/ ) ( , ) ( , )),i t n k n k n
vG T q m T t T tε− ω − − −

−∞
= − − + −∫ q q q  

 
0

( )
2 = e ( (1/ ) ( )i t k nkG iq m Tε− ω −

−∞
+∫ q   

 ( ) ( )( ), (1/ ) ( , ) ( , ))n k n k n
v vT q m T t T t− − −+ − − + −q q q  .  

With the help of Green's chain of equations the mass oper-
ator 1

1=M G G−  can be represented as  

 2 11 2
1 2 1

1

1= = ( ),
I G

M I G G G
I G I

−+
+ +

−
  

 2 1
2 1

1= Re ( ).G G G
I

−Γ +   
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