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Abstract. In this paper, the new sensors based on the C(4) or/and C(5) mono(heteroaryl) and 

di(heteroaryl) substituted pyrimidines are described. The effect of different substituents in 

pyrimidine ring on the detection limits and selectivity for prepared sensors are explained. The 

results of detection towards various nitro-explosives and volatile interferents at room 

temperature with use of the portable detector “Nitroscan” are shown.  

1. Introduction 

Development of an efficient and cost-effective method for detection of nitroaromatic explosives is 

highly desirable, since there are considerable environmental and security needs, especially with the 

surge of international terrorism and an enhanced use of explosives in terrorist attacks [1-3]. There are 

a number of handled sniffers (sensors working as an artificial dog’s nose) using advantage of materials 

which are capable of searching explosives through smell of these compounds [4]. The most famous 

artificial nose for nitroaromatics has been launched successfully into the market, as “FIDO” by 

Nomadics Inc [5]. “Nitroscan”, a Russian portable detector of nitro-explosives, has been designed and 

produced by “Promautomatika” Plant in collaboration with “UralProektAvtomatika” and “Security 

Intermolecular System” (Ekaterinburg, Russia) [6]. The main device functions are as follows: 

excitation of sensor element stationary luminescence and measuring its intensity in the absence of 

explosive vapors; registration of changes in the intensity of sensor element luminescence in time at the 

contact of its surface with explosive vapors; creation of external conditions for efficient interaction of 

the sensor element surface with explosive vapors. The device contains a ventilator for pumping air 

through the sensor element, an exciting luminescence light source, a photo element for luminescence 

intensity recording, an electronic tract, that converts the light flux into an electrical signal, the analog-

digital converter and a microcontroller unit for control and display. Alarm on explosive detection is 

realized as a sound emitter and quantitative indicators are presented on the symbol display [7]. The 

development and investigation of new sensors for the device “Nitroscan” was the aim of our work. 

2. Results and discussion 

Recently, three types (A-C) of new push-pull dyes based on pyrimidines, bearing thiophene or/and 

phenyl linkers, have been studied as sensing fluorophores (figure 1). These compounds A-C have been 
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obtained by using a combination of the Suzuki cross-coupling and nucleophilic aromatic substitution 

of hydrogen (SN
H
) reactions [8-10].  
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Figure 1. Molecular structures of the donor-π-acceptor organic dyes A-C on a pyrimidine scaffold. 

To evaluate the utility of the fluorophores A-C for the detection of nitroaromatic explosives, the 

corresponding fluorescence measurements of the fluorophores A-C were carried out in acetonitrile 

solutions containing measured quantities of the compounds shown in figure 2, which serve as 

quenchers of the fluorescence. 
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Figure 2. Structures of used quenchers and interferents. 

Detection limits (DL) of the fluorophore to the analytes in acetonitrile solution were determined 

and calculated according to the following functions: 
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Firstly, the standard deviation (Sb) was calculated by measuring the intensity of the fluorophore in 

the blank solution for more than 10 times and then the average intensity ( x ) was obtained. By fitting 
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the data into Function 1, the value of standard deviation (Sb) was obtained. Secondly, a certain amount 

of analyte such as DNAN, PA, SA, TETNB, DNT, TNT, TATB, NB or Tol was added into the blank 

solution and the resulting variation of the intensity (Δc) was recorded. By fitting the data into function 

2, where ΔI is the variation of intensity, and Δc is the variation of quencher concentration, the value of 

precision S was calculated. Finally the detection limit, DL, was calculated according to function 3. 

The ranges of detection limits for different nitroaromatic compounds are given in table 1. 

Table 1. Detection limits (DL) of DNAN, PA, SA, TETNB, DNT, TNT, TATB, NB and Tol towards 

fluorophores A-C in CH3CN. 

Dye 
DL (mol×L

-1
) 

DNAN PA SA TETNB DNT TNT NB Tol 

A 
- 5.8×10

-6
 

÷2.4×10
-7

 

- - 8.4×10
-5 

÷1.2×10
-6

 

1.7×10
-4 

÷1.4×10
-6

 

- - 

B 
2.6×10

-4 

÷1.2×10
-5

 

1.7×10
-5 

÷1.8×10
-7

 

5.0×10
-6 

÷2.1×10
-6

 

1.1×10
-4 

÷3.5×10
-6

 

4.6×10
-4 

÷3.6×10
-5

 

2.0×10
-4 

÷6.5×10
-5

 

2.7×10
-4 

÷4.3×10
-5

 

- 

C 
2.0×10

-3 

÷2.9×10
-5

 

6.9×10
-4 

÷4.0×10
-5

 

7.15×10
-4 

÷3.7×10
-5

 

1.5×10
-3 

÷4.7×10
-5

 

5.4×10
-4 

÷2.9×10
-5

 

5.9×10
-4 

÷3.0×10
-5

 

1.3×10
-4 

÷3.8×10
-3

 

5.1×10
-3 

÷1.1×10
-4

 

As can be seen in Table 1, detection limits are decreased for fluorophores from type A to type C. 

We suggest that an additional aryl substituent at C(5) causes a significant steric hindrance which has to 

be proceeding at the neighboring C(4) position of the pyrimidine ring. This steric hindrance 

deteriorates interaction of fluorophore with quencher and also interrupts π-electron conjugation in 

push-pull system. 

On a base of fluorescence measurements in acetonitrile solutions, the two best fluorophores (see 

figure 3) have been proposed for fabrication of sensors prototypes and their application in detecting of 

explosive vapors [9,10]. 
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Figure 3. Structures of fluorophores I and II with the best data 

for detection limits in acetonitrile solutions. 

For the fabrication of sensors, a non-woven dry wipe was used as a porous substrate (70% wood 

pulp, 30% polypropylene, Industrial Wipes purchased from Kunshan Yichen Clean Material Co., Ltd., 

China). A piece of the non-woven dry wipe (50 mm in diameter) was immerged in the fluorophore 

solution with a range of concentration: 1.0×10
-3

 (I or II), for 5 min. Then non-woven dry wipe or 

spunlace with immobilized fluorophore I or II was removed from the solution and dried at 70–80 °C 

for 30 min. To demonstrate its application as a fluorescence sensor for nitroaromatic compounds 

detection, the obtained non-woven dry wipe was placed in cartridges. 

The resulted sensors have been used to detect nitrobenzene (NB) vapor in a hermetic glow-box (0.8 

m×0.6 m×0.4 m) containing maximum permissible concentration (3 mg/m
3
) and also 0.3 and 0.03 

mg/m
3
 of NB). It has been shown that all sensors are capable of fast reversible and reusable self-

recovering after interruption of exposure to nitroaromatic explosive. Reversibility of the sensing 
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process for sensors on the basis of fluorophores I and II in NB vapor was examined by using the 

following procedure: the device bearing a sensor was inserted into a glow box with NB vapor with 

various concentrations for 25 s, and then the fluorescence intensity was recorded. After that, the device 

was removed from the box for 25 s, and the ambient room air was pumped automatically through the 

sensor in the device. The recovered emission intensity of the sensor was measured. The sensing and 

pumped process was repeated 3 times, and the results obtained are shown in figure 4. As can be seen, 

the recovered fluorescence intensity is decreasing with each next cycle but the quenching efficiency 

does not falls down to a 0 level even up to cycle 30. 
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Figure 4. Fluorescent recovery cycles for the sensor on the basis of I and II in 

the device “Nitroscan” with exposure to nitrobenzene (NB) vapor with various 

concentrations. 

In addition, both sensors I and II show a good selectivity to DNT in comparison with some other 

explosives [2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl), 

cyclotrimethylenetrinitramine (RDX), pentaerythritol tetranitrate (PETN)] and interferents, such as 

ethanol, ethylene glycol, acetone, acetic acid, toluene, nitrobenzene, phenol, and 1,2-dichlorobenzene 

(see figure 5), since their quenching sensitivities in these vapours are weaker than those in DNT. 

3. Conclusion 

In summary, fifteen dyes of the push-pull type on the basis of pyrimidines bearing various thiophene 

or/and phenyl linkers and various electron-donative fragments have been studied as sensing 

fluorophores. All dyes demonstrate high sensitivity towards nitroaromatic explosives. High 

fluorescence quenching response makes these fluorophores in vapour be promising fluorescence 

sensor materials for nitroaromatic explosives with the detecting limit of ~10−11 g/cm
3
, as estimated in 

experiments with NB by utilizing the portable detector “Nitroscan”.  
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Figure 5. Sensor’s I and II fluorescence quenching (%) in the first cycle towards various 

nitro-explosives and volatile interferents at room temperature. 
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