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Abstract. In the present article, we use the selection theory to estimate the non-stationarity
time of evolving dendrites to their steady-state growth.

1. Introduction
The microstructure predictions in solidification processes have the deep scientific and practical
roots (see [1–5] and references therein). A development of experimental methods in solidification
processing made possible to reach a much broader range of measurable crystal growth velocities,
temperature gradients and cooling rates [6]. For instance, splats and films can be quenched with
the cooling rate of the order of 107 K/s, the temperature gradients can have the order of 108 K/s
in laser annealing of sample surfaces, and containerless methods of droplets processing provide
the deep undercoolings having the values of 200-400 K prior to the primary crystallization. A
large driving force for transformation, arising in such methods, leads to fast solidification from
a liquid metastable state as well as the high-speed solid-state transformations of metastable
crystalline phases [7]. For instance, the experimentally measured solidification velocity has the
order of 10−1−102 m/s in droplets processed by the electromagnetic levitation facility [7,8]. As
such, the total duration of primary solidification in small droplets is rather short and estimated
as [8]: 10−5 − 10−3 s.

For the analytical calculations of rapid solidification regimes and theoretical estimations of
microstructural parameters of dendritic and eutectic crystals, different models of non-equilibrium
crystallization are used, as a rule, formally developed for the steady state scenario [9–11].
However, the steady state approximation for conditions of rapid solidification of small samples
(films, splats, droplets) is questionable and such approach is often criticized. A very common
view is that a steady state scenario may be expected to exist but not in rapidly solidifying small
samples [12]: the stationary regime of solidification can be reached at long times that is possible
in usual experimental circumstances (directional solidification) or well-known classic technologies
(continuous casting and low intensive brazing). In other words, during the short periods of
time, the steady state is not achieved and, consequently, the quasi-stationary approximation
in modeling of rapid solidification does fail. The detailed calculations of solidification regimes
lead, however, to the remarkable behavior of the transient time between the non-stationary and
stationary regimes of solidification: the non-stationary time sharply depends on the interface
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Table 1. Material parameters for succinonitrile (SCN) and nickel (Ni)
Parameter SCN Ni
Melting temperature TA (K) 331.233 [27] 1728 [28]
Latent heat L (J/(m3) 4.781 · 107 [27] 2.67 · 106 [30]
Heat capacity cp (J/(m3K)) 2.08 · 106 [27] 6.39 · 103 [30]
Solid-liquid interface energy σ (J/m2) 8.9 · 10−3 [27] 0.275 [30]
Capillary length d0 (m) 2.821 · 10−9 [27] 4.92 · 10−10 [29]
Surface energy stiffness αd (–) 0.0825 [27] 0.27 [30]
Thermal diffusivity DT (m2/s) 1.13 · 10−7 [27] 1.2 · 10−5 [30]
Selection constant σ0 (–) 0.1 [22] 0.191 [29]
Relaxation time for ∂φ/∂t (∗) τφ (s) 2.5 · 10−7 5.5 · 10−7

Maximum speed of φ-field(∗) Vφ
B (m/s) 11.5 25.25

Diffusion coefficient of φ(∗) νφ (m2/s) 5.5 · 10−5 3.5 · 10−4

(∗)The numerical value of this parameter is chosen in the present work.

velocity and undercooling in solidifying samples [13]. In particular, for the planar solid-liquid
interface, it has been shown that the non-stationary time rapidly decreases as the crystal growth
velocity increases taking the values of the order of milli- or even micro-seconds with the velocity
of the order of centimeters per second [13].

Moreover, using the theoretical model developed in [13], it is straightforward to show that
the non-stationary time sharply increases with the decrease of crystal growth velocity taking
the values of the order of seconds or even minutes for the interface velocity of the order of
micrometer per second. Such remarkable dependence should, obviously, exist not only for the
planar interface but also for many other crystal growth shapes. As one of the main crystal
growth forms is the dendritic crystal shape (for slow and rapid regimes of rapid solidification
[1–3]), we provide analytical treatments for obtaining the non-stationary time which could be
quantitatively estimated in comparison with the time for primary solidification of experimentally
investigated samples. Our studies are limited to two dimensional dendritic growth. Many of
properties of metallic samples (for instance, the time for homogenization) strictly depend on the
interdendritic spaces between secondary branches of dendrite. Applicability of the steady-state
models to the growth of secondary branches is an actual task. Therefore, the present analysis
gives some estimations of a non-stationary period of growing secondary branches in the slow
and rapid solidification conditions.

2. Relaxation time to a steady-state regime
The relaxation time τT characterizes how fast the dendrite tip velocity,

v(t) ∝ Av(t) exp(−Amt/τT ) (1)

relaxes to the steady-state regime of dendritic growth [14]. Here Av(t) is the time-dependent
amplitude of relaxation, Am is the factor which depends on the model parameters, t is the
time and the relaxation time τT represents a relaxation parameter to the steady state regime
of thermal dendrite. Let us consider the symmetric model of dendritic growth in the positive z
direction with a constant velocity v. Let ζ = ζ(x, t) and ρ designate the instantaneous coordinate
of the crystallization front and the radius of curvature of the dendrite tip, respectively. It is
convenient to measure lengths in units of ρ and times in units of ρ/v. In the case of zero surface
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tension, the dendrite shape represents the Ivantsov parabola [14–17]

ζiv = −x
2

2
.

In the case of nonzero surface tension, this solution should be modified by a shape correction
ζ0(x). The steady-state solution in the form of ζiv + ζ0(x) exists only if the so-called selection
parameter

σ∗ =
d0
ρPg

=
2d0DT

ρ2v
=

d0v

2DTP 2
g

(2)

takes a special value determined from the microscopic solvability theory [18–25]. Here

Pg =
ρv

2DT
(3)

is the growth Péclet number, d0 is the capillary length, and DT is the thermal diffusivity.
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Figure 1. The thermal dendrite growth from the undercooled nickel and SCN melts. The
relaxation time τT is a function of the growth Péclet number Pg = ρv/2DT . Calculations are
made using Eqs. (9) and (10).

It is important to know what is the real relaxation time when the parabolic dendrite shape
can be considered as steady-state. In order to answer this question let us introduce a small time-
dependent correction ζ1(x, t) to the steady-state solution and present the secondary branches
ζ(x, t) as:

ζ(x, t) = ζiv + ζ0(x) + ζ1(x, t). (4)

The time-dependent addition ζ1(x, t) has been found in [26] on the basis of WKB theory. The
result is

ζ1(x, t) = f(2z)1/8σ∗1/4Im

{
exp

[
(2z)1/4

c3
√
σ∗

(
1− iz − t√

2z

)3/2
]}

, (5)

where c =
√

3/2, z = x2/2, and f is a constant of unity order. Rising the complex number
1− i(z− t)/

√
2z to the power 3/2, separating the real and imaginary parts of expression (5) and

introducing the dimensional variables

τ =
ρt

v
, ξ = xρ, (6)
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Figure 2. Growth of the thermal dendrite from the undercooled nickel and SCN melts. The
relaxation time τT is a function of the growth velocity. Calculations are made by Eqs. (3) and
(10).

one can represent the final result as

ζ1(x, t) = A exp

−
(βδ)4/3 +

(
(βδ)2/3

2
− τ

τT

)2
3/4

 , (7)

where the following designations are introduced

τT =
ρ

v(βδ)2/3
, β =

√
ξ

c3
√
ρσ∗

, α =
ξ

2ρ
− vτ

ξ
, δ = | cos(ϕ/2)|,

A = f

(
ξσ∗

ρ

)1/4

sin [β sin(ϕ/2)] , ϕ = arctan

(
α2 − 3

1− 3α2

)
. (8)

To obtain a dependence of the thermal relaxation time τT of secondary dendritic branches on the
growth Péclet number Pg let us express the dendrite tip velocity v from the solvability condition
derived in Refs. [21–23] for arbitrary Péclet numbers

v(Pg) =
2DTα

7/4
d σ0P

2
g

d0(1 + a1
√
αdPg)2

, (9)

where αd is the surface energy stiffness, σ0 is the selection constant and a1 =
√

8σ0/7(3/56)3/8.
Taking into account expression (8) and considering a vicinity of dendritic tip (ξ ∼ ρ) one can
get

τT ≈
2DTPgc

2

δ2/3v2(Pg)

(
d0v(Pg)

2DTP 2
g

)1/3

, (10)

with the following estimated constants: α ≈ 1/2 and δ ≈ 0.738. These estimations were
made for the thermal dendrite with the following values of the parameters: the relaxation time
τT ≈ 10−10...10−7(s), the scaled coordinate ξ ≈ ρ ≈ 10−6 (m) and the growth velocity v ≤ 10−2
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(m/s). Then, using equation (8), one gets α ≈ 0.5− vτ/ρ with vτ/ρ ≤ 10−3 � 1/2 and obvious
estimation for the parameter δ. Expression (10) determines the thermal relaxation time as a
function of the growth Péclet number Pg. Together with the dendrite tip velocity v given by
the selection criterion (9) this makes possible to quantitatively estimate the relaxation time to
the steady-state regime of dendrite growth.

3. Conclusions
In summary, the growth of secondary dendritic branches represents a complex phenomenon with
many effects and parameters for a wide range of undercoolings. Therefore, we plan to advance
the present formalism for estimation of non-stationary time to include the kinetic effects [23],
non-equilibrium effects (such as solute trapping, solute drag, trapping of disorder [16]) and three
dimensional dendritic structure.
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