коэффициент катодной реакции b_k и не влияют или уменьшают тафелев коэффициент анодной реакции b_a , табл.

Таблица. Зависимость некоторых параметров от природы добавки

$N_{\underline{0}}$	-E _{кор} ,	b _k ,	b _a ,	Значения үдля –Е,В			
добавки	мВ	мВ	мВ	0,8	0,6	0,3	0,22
0	420	165	56	7,84	10	6,3	0,63
1	385	174	31	2,82	7,08	5,01	1,47
2	383	188	53	3,55	6,6	1,58	0,50
3	378	165	56	1,41	3,16	3,98	0,63
4	357	141	42	1,99	3,98	0,40	0,25
5	348	175	52	7,84	10	0,63	0,63

Установлено, что исследованные добавки действуют по смешанному механизму с преобладанием блокировочной составляющей по сравнению с двойнослойным эффектом. Изменение величины эффективной энергии активации коррозии стали в присутствии добавок свидетельствует о том, что помимо указанных эффектов имеет место и активационное торможение процесса.

ОБРАЗОВАНИЕ ФОСФАТОВ РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В РАСПЛАВАХ НА ОСНОВЕ ЭВТЕКТИЧЕСКОЙ СМЕСИ ХЛОРИДОВ НАТРИЯ И ЦЕЗИЯ

Иванов А.Б. $^{(1)}$, Якимов С.М. $^{(1)}$, Волкович В.А. $^{(1)}$, Васин Б.Д. $^{(1)}$, Чукин А.В. $^{(2)}$, Штольц А.К. $^{(2)}$

(1) Кафедра редких металлов и наноматериалов (2) Кафедра теоретической физики и прикладной математики

Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

Пирохимическая переработка облучённого ядерного топлива в высокотемпературных расплавах на основе хлоридов щелочных металлов является одной из возможных альтернатив существующим экстракционным технологиям. После растворения в расплаве облучённого топлива (металлического или керамического) и выделения электроположительных продуктов деления, урана и плутония некоторых других актиноидов электролит, перед повторным использованием, необходимо очистить от оставшихся электроотрицательных продуктов деления, минорактинидов и продуктов коррозии конструкционных материалов. Осаждение продуктов деления (включая редкоземельные) в виде фосфатов является привлекательным решением. Эвтектическая смесь хлоридов натрия и цезия NaCl-2CsCl является возможным кандидатом для круп-

номасштабной пирохимической переработки. В отличие от других технологических расплавов (3LiCl-2KCl и NaCl-KCl) из данного электролита возможно электролитическое получение твёрдых растворов UO_2 - PuO_2 . Процессы образования фосфатов редкоземельных элементов в расплаве данного состава ранее не изучались.

В настоящей работе было изучено образование фосфатов ряда редкоземельных элементов. Исходные расплавы готовили хлорированием соответствующих оксидов редкоземельных элементов хлором или хлористым водородом и кинетика процессов хлорирования оксидов была исследована с помощью высокотемпературной электронной абсорбционной спектроскопии. После растворения оксидов РЗЭ хлорированием были также зарегистрированы электронные спектры поглощения ионов $LnCl_6^{3-}$ (Ln=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm и Yb) в NaCl-2CsCl в диапазоне 300-1800 нм и рассчитаны коэффициенты экстинкции хромофоров.

Эксперименты по осаждению фосфатов были выполнены для иттрия, лантана, церия, празеодима, неодима, гадолиния и эрбия. В качестве осадителя использовали ортофосфат натрия, исходное мольное отношение фосфата к редкоземельному элементу варьировали от 0,5 до 7,5. Кинетику реакций образования фосфатов изучали с помощью спектроскопических измерений. Состав и структуру образующихся фосфатных соединений исследовали методами рентгеновской порошковой дифракции и колебательной спектроскопии.

КЕРАМИЧЕСКИЕ НАНОСТРУКТУРНЫЕ НЕМЕТАЛЛИЧЕСКИЕ НЕОРГАНИЧЕСКИЕ МНОГОСЛОЙНЫЕ ПОКРЫТИЯ

Иванов А.А., Мамаев А.И. Томский государственный университет 634059, г. Томск, пр. Ленина, д. 36

Повсеместно применяемые металлические и неметаллические материалы в значительной мере достигли своего предела конструктивной прочности. Вместе с тем развитие современной техники требует создания материалов, надежно работающих в сложной комбинации силовых и температурных полей, при воздействии агрессивных сред, излучений, глубокого вакуума и высоких давлений. Решить эту задачу можно применением современных материалов и методов обработки в совокупности с традиционными материалами.

Современным методом обработки материала является метод микроплазменного оксидирования который используется для придания поверхности различных функциональных свойств. Преимуществами мето-