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Abstract – The paper reviews main stages of development of 
reactive power generators, describes the 1-st and 2-nd generation 
of synchronous condensers with conventional cooling systems and 
a new generation – superconductive synchronous condensers. 
Asynchronous non-salient pole condensers expand the class of 
rotating compensating devices. Comparison of dynamic 
performance of conventional synchronous condensers, cryogenic 
condensers and SVC is presented. The variant of a model 5 MVA 
HTSC synchronous condenser intended for wind power plants is 
described. 

Keywords – reactive power, reactive power generator, 
synchronous condenser, asynchronous condenser, 
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I. INTRODUCTION  

 
Reactive power is the power of AC circuits utilized for 

supporting magnetic fields in inductive loads (transformers, 
electrical motors, inductive stoves, etc.) or electric fields for 
capacitors, cables, etc. The specific feature of reactive power 
is the fact that it cannot be transformed into another form of 
energy. 

Reactive power compensation is defined as reactive 
power management with the aim of improving the 
performance of AC power [1, 2]. Reactive power 
compensation is considered in two aspects: load 
compensation and voltage support. In load support the 
objectives are to increase the power factor, to balance the 
load and to eliminate current harmonics from nonlinear 
industrial loads [1]. Voltage support reduces voltage 
fluctuations at a certain terminal of transmission line and 
improves the stability of AC system by increasing the 
maximum active power that can be transmitted It helps to 
attain a flat voltage profile at all levels of power 
transmission, increases transmission efficiency, controls 
steady-state and temporary over-voltages and helps to avoid 
catastrophic black-outs [1]. 

Synchronous condensers allow to increase the throughout 
transmission capacity of individual transmission lines, 
intersystem or interstate long distance transmission lines. 
They are responsible for correction of electrical power flow 
along the circuits with different voltage values in multi-
contour electrical grids to obtain positive technical or 
commercial effect [2]. 

As reactive power compensation is an effective way to 
improve the electric power network, there is an urgent need 
for controlled reactive power generation. Reactive power 
generator is one of the devices, responsible to solve the 
above mentioned tasks.  

Previously reactive power generators and synchronous 
condensers were synonyms. They represented a multi-pole 
synchronous machine without mechanical load on the shaft, 
operating with variable excitation and armature currents in 
accordance with U-curves [3]. 

In Russia there exists an excess of volume of reactive 
power in transmission networks. In 500 kV lines the level of 
compensation equals approximately 45 %. In the 330 and 

200 kV transmission lines reactive power is practically not 
compensated [2]. 

 
II. FIRST GENERATION OF CONVENTIONAL SYNCHRONOUS 

CONDENSERS 
 
The development of synchronous condensers started in 

1911 by the General Electric (USA). The first alternator 
rated at 10 MVA was manufactured in 1919 [4]. It was an 
air-cooled machine, ordered by Ontario Hydro. 

Till the end of 70-s of the previous century synchronous 
condensers as reactive power generators dominated in 
electric grids, they were manufactured by numerous 
electrical machine-building companies with the largest one 
produced and tested in Sweden [5]. It had the rating 345 
MVA and was a fully water-cooled machine, intended for 
Dumont station.  

 At 70-s synchronous condensers started to be replaced 
by electronic devices: static reactive power compensators 
(SVC – static VAR compensator, STATCOM – static shunt 
compensator), based on application of power electronics, 
capacitor banks and reactors. They possessed certain 
advantages, including fast response ability. Later flexible AS 
transmission systems (FACTS) were introduced. 

Synchronous condensers stayed to operate, working out 
their resource. There appeared publications, justifying the 
advantages of rotating electrical devices [6]. Nevertheless the 
1-st generation of synchronous condensers manufacturing 
with mainly air- and hydrogen cooling systems faded out 
about 1980-s. 

Around 15 years ago a revival of rotating synchronous 
condensers could be witnessed in many countries. The 
change in energy mix is leading to replacement of 
conventional energy production with synchronous generators 
by low inertia and low thermal time constant power park 
modules [7]. These park modules are represented by wind 
farms and solar power plants.  

As a result the second generation of conventional 
synchronous condensers started to develop alongside with 
one more type of reactive power generators – asynchronous 
condensers. 

 
III. SECOND GENERATION OF CONVENTIONAL 

SYNCHRONOUS CONDENSERS 
 

The era of the 2-nd generation of synchronous condensers 
started beginning from 2000 [4]. Main manufacturers are 
ABB, GE, Siemens. The unit rating exceeds 400 MVA. 
There practical application is associated with wind- and solar 
power installations and high-voltage DC transmission lines 
(HVDC). Their main advantages are evaluated as follows 
[8]: 
 

- increased short-circuit MVA strength, 
- response to lower system fluctuations, 
- improved high-response excitation systems, 
- voltage and frequency ride-through capability, 
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