УДК 538.911

Л. О. Ведерникова^{*}, Е. А. Макарова, В. И. Пастухов

Уральский федеральный университет имени первого Президента России Б. Н.Ельцина, г. Екатеринбург

*lory_26@mail.ru

Научный руководитель – проф., д-р техн. наук М. Л. Лобанов

ПОЛОСЫ СДВИГА В СТАБИЛЬНЫХ ПРИ ДЕФОРМАЦИИ ОРИЕНТИРОВКАХ МЕТАЛЛОВ С ОЦК-РЕШЕТКОЙ

Методом ориентационной микроскопии (EBSD) были исследованы кристаллографические особенности формирования полос сдвига (ПС) в стабильных при холодной прокатке ориентировках ОЦК-решетки (на примере Fe-3%Si и Mo). В кристаллах {111}<112> формируются ПС с ориентировкой близкой к {110}<001>, находящиеся с матрицей в близкой специальной разориентации к Σ9. В кристаллах {112}...{111}<10> формируются ПС с ориентировками близкими к {110}<001>, находящиеся с матрицей в специальной разориентации, {110}<110> Σ5. В кристаллах формируются близкой К ПС c ориентировками близкими к {100}<001>, находящиеся с матрицей в специальной разориентации, близкой к Σ5. В кристаллах {001}<110> ПС не образуются. Показано, что во всех ориентировках образуются ПС двух типов, отличающиеся углами наклона к плоскости прокатки и степенью рассеяния ориентировки внутри полос.

Ключевые слова: текстура, полосы сдвига, ориентационная микроскопия, специальные разориентации, рекристаллизация.

L. O. Vedernikova, E. A. Makarova, V. I. Pastukhov

SHEAR BANDS IN STABLE ORIENTATIONS OF BCC-METALS AT DEFORMATION

The method of orientation microscopy (*EBSD*) was investigated by the crystallographic characteristics of shear bands (SBs) formation in the stable by cold rolling orientations of the BCC lattice (Fe–3% Si and Mo). In crystals {111}<112> are formed of SB with the orientation approximate to {110}<001>, which is a matrix in a special orientation near to Σ 9. In crystals {112}...{111}<10> SB are generated with orientations approximate to {110}<001>, which is a matrix in a special orientation near to Σ 5. In crystals {110}<110> are formed of SB with orientations approximate to {100}<001>, which is a matrix in a special orientation near to Σ 5. In crystals {110}<110> are formed of SB with orientations approximate to {100}<001>, which is a matrix in a special orientation near to Σ 5. In crystals {001}<, which is a matrix in a special orientation of SB are formed of SB with orientations approximate to {100}<001>, which is a matrix in a special orientation near to Σ 5. In crystals {001}<, which is a matrix in a special orientation of SB are formed of SB are formed of SB with orientation or special special special (001)>, which is a matrix in a special orientation of SB are formed of two

[©] Ведерникова Л. О., Макарова Е. А., Пастухов В. И., 2016

types with different angles of inclination to the plane of rolling and the degree of scattering orientation within the bands.

Keywords: texture, shear bands, *EBSD*, special misorientation, recrystallization.

До настоящего времени полосы сдвига (ПС) остаются наименее элементом мезоструктуры деформации понятным металлических материалов. При этом имеется достаточно много экспериментальных данных [1–4] о морфологии ПС, их расположении в матрице и взаимосвязи ориентировок матрицы и кристаллитов внутри полос. Также имеются развитые теоретические представления относительно некоторых аспектов их формирования [5-7]. С практической точки зрения особый интерес вызывает образование ПС в материалах, В которых текстура рекристаллизации главным образом определяется ориентировками, возникающими в этих полосах [7; 8].

Целью данной работы являлось установление кристаллографических особенностей формирования ПС в кристаллах со стабильными ориентировками, формирующимися при холодной прокатке.

Исследования проводились на листах технического сплава Fe–3%Si и технического молибдена. Образцы подвергались прокатке с различными степенями деформации и градиентному отжигу. Моно- и поликристаллы исследовались с помощью растрового электронного микроскопа *TESCAN Mira* 3 *LMU* с приставкой *EBSD HKL Inca* и системой анализа Oxford Instruments.

Во всех деформированных кристаллах наблюдались ПС двух типов – ПС-I и ПС-II, которые отличались друг от друга углами наклона плоскости габитуса к плоскости прокатки.

В поликристаллах с ориентировкой {111}<112> наблюдались ПС-ІІ, угол наклона плоскости габитуса которых составлял 16-20° и ПС-I, плоскость габитуса которых наклонена к плоскости прокатки под углами 35-40°. ПС-ІІ образовывались при степенях деформации 30...50 % в развитой структуре, состоящей, из деформационных полос, разделенных переходными полосами (на рисунке а). ПС-І формировались при больших деформации деформированной матрице. степенях в пересекая деформационные полосы от одной переходной полосы к другой. Ориентировка ПС, которые наблюдались в кристаллах с ориентировками близкими к {111}<112>, характеризовались ориентировкой ~ (110)[001] (таблица). То есть данные ПС по отношению к окружающей матрице находились в специальной разориентации **У**9 (ось поворота <110>, угол поворота 38,94°).

Типы полос сдвига в кристаллах с различными ориентировками; а – ПС-II (наклонные) в прокатанном кристалле {111}<112>, состоящем из деформационных полос; б – ПС-I в кристалле с ориентировкой {112}<110>; в, г – ПС-I типа «рыбья кость» в кристаллах с ориентировкой {110}<110>

В зернах с ориентировкой близкой к {112}<110> также были обнаружены два типа полос сдвига, отличающиеся углом наклона к плоскости прокатки ~23° (IIC-II) И ~40° (ПС-I) (рисунок, б). Кристаллическая решетка внутри ПС имела ориентировку, близкую к (110)[001], но отклоненную от идеальной госсовской на большие углы по сравнению с ориентировками ПС в {111}<112> (таблица). По-видимому, ПС были связаны с матрицей специальной разориентацией, близкой к Σ5 (ось поворота <100>, угол поворота 36,94°).

В кристаллах с ориентировкой {110}<110> мезоструктура основном ПС, деформации была представлена В образующими характерный рисунок «рыбьей кости» (на рисунке в, г). При этом в разных зернах структура «рыбьей кости» несколько отличалась: в некоторых зернах, помимо сравнительно крупных («основных») ПС, наблюдались мелкие, «вторичные» ПС, иногда перерезающие друг друга. Диапазон углов наклона плоскостей габитуса ПС к плоскости прокатки составлял ~±20-25°. Кроме подобных ПС, в некоторых кристаллах наблюдались более широкие полосы (15–25 мкм), расположенные к плоскости прокатки углами ~10–15°. По морфологии они под больше напоминали деформационные полосы. EBSD-анализ показал, что кристаллическая решетка внутри данных ПС и элементы мезоструктуры, похожие на полосы деформации, имеют ориентировку близкую к $\{100\}<001>$ (таблица). Также было выявлено, что кристаллическая решетка в ПС типа «рыбья кость» по отношению к матрице находится в практически точной специальной разориентации $\Sigma 5$.

В ходе исследований было отмечено, что ориентировка {001}<110> не склонна к образованию ПС (и любых других элементов мезоструктуры) при любой степени деформации.

Все выявленные с помощью ориентационной микроскопии особенности ПС объединены и представлены в таблице.

	Характеристики полос сдвига				
Ориентиров- ка матрицы	Тип	Ориентировка внутри полосы	Угол наклона габитуса к плоскости прокатки	Рассе- яние	Специаль- ные разориен- тации
	Ι	{110}<100>	35–40°	±10°	Σ9
{111}<112>	II	{110}<100>	16–20°	±20°	$\sim \Sigma 9$
	Ι	~{110}<100>	38–42°	±10°	~ ∑5
{112}<110>	II	~{110}<100>	22–25°	±20°	$\sim \Sigma 5$
{001}<110>	Ι	Не склонна к образованию полос сдвига			_
	II				
	Ι		20–25°	±10°	Σ5
{110}<110>	II	{100}<001>	10–15°	±10°	

Кристаллографические особенности формирования ПС

Если деформированные кристаллы подвергнуть отжигу, то в них начнется рекристаллизация. Проведенное исследование показало, что основное количество зародышей первичной рекристаллизации формируется в ПС. Причем новые кристаллиты имели с матрицей специальные границы, соответствующие специальным разориентациям, возникающим при формировании ПС в процессе деформации.

Работа выполнена в рамках проектной темы МОиН РФ (задание № 11.1465.2014/К). Авторы выражают признательность за содействие Программе поддержки ведущих университетов РФ в целях повышения их конкурентоспособности № 211 Правительства РФ № 02.А03.21.0006.

ЛИТЕРАТУРА

- 1. The deformation and shear bands in the Fe-3%Si alloy / В. К. Sokolov [и др.] // Textures and Microstructures. 1999. V. 32. Issue 1–4. Р. 21–39.
- 2. Полосы сдвига в техническом сплаве Fe-3%Si-0.5Cu и кристаллографические аспекты их образования / М. Л. Лобанов [и др.] // Известия вузов. Черная металлургия. 2011. № 7. С. 42–47.
- 3. Occurrence of shear bands in rotated Goss ({110}<110>) orientations of metals with bcc crystal structure / T. Nguyen-Minh [и др.] // Scripta Materialia. 2012. V. 67. P. 935–938.
- 4. Русаков Г. М., Лобанов М. Л., Редикульцев А. А. Переориентация кристаллической решетки в полосах сдвига кристаллитов {112}<131> сплава Fe-3%Si // Журнал технической физики. 2014. Т. 84. №. 8. С. 141–143.
- 5. О возможности формирования областей с ориентацией {110}<001> в процессе холодной деформации технического сплава Fe-3%Si / Г. М. Русаков [и др.] // Физика металлов и металловедение. 2006. Т. 101. № 6. С. 653–659.
- 6. Model of {110}<001> Texture Formation in Shear Bands during Cold Rolling of Fe-3 Pct Si Alloy / G. M. Rusakov [и др.] // Metallurgical and materials transactions. 2009. V. 40A. № 5. P. 1023–1025.
- 7. Ushioda K., Hutchinson W. B. Role of Shear Bands in Annealing Texture Formation in 3%Si-Fe Single Crystals // ISIJ Int. 1989. V. 29. P. 862–867.
- 8. Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel. / H.-Z. Li [et al.] // Materials characterization. 2014. V. 715–716. № 88. P. 158–163.