УДК 548.4 539.2

Е. А. Яшина^{1*}, А. А. Зисман^{1, 2}, С. Н. Петров^{1, 2}, Н. Ю. Золоторевский² ¹НИЦ «Курчатовский институт» – ЦНИИ КМ «Прометей», г. Санкт-Петербург ²Санкт-Петербургский политехнический университет Петра Великого, г. Санкт-Петербург

* Npk3@crism.ru

ВЫЯВЛЕНИЕ КРИСТАЛЛОГРАФИЧЕСКИХ ОСОБЕННОСТЕЙ БЕЙНИТНО-МАРТЕНСИТНЫХ СТРУКТУР В ЗАВИСИМОСТИ ОТ УСЛОВИЙ ЗАКАЛКИ МЕТОДАМИ EBSD-АНАЛИЗА

Методом EBSD-анализа исследовали влияние температуры закалки на кристаллографические особенности бейнитно-мартенситной структуры образцов из высокопрочной низкоуглеродистой стали. Показано, что закалка с более высокой температуры снижает долю большеугловых практически не меняет спектр межвариантных границ. но разориентировок. В то же время этот спектр заметно изменяется с повышением скорости охлаждения, что обусловлено ростом доли мартенситной составляющей.

Ключевые слова: EBSD, кристаллографические особенности, бейнитно-мартенситная структура, межвариантные разориентировки, закалка.

E. A. Yashina, A. A. Zisman, S. N. Petrov, N. Yu. Zolotorevsky

INVESTIGATION OF CRYSTALLOGRAPHIC FEATURES IN BAINITE-MARTENSITE STRUCTURES AFTER DIFFERENT QUENCHING CONDITIONS BY MEANS OF EBSD-ANALYSIS

The influence of quenching temperature on crystallographic features in bainite-martensite structure of high strength low alloyed steel is under research. Higher quenching temperature decreases high-angle boundaries fraction whereas intervariant misorientations distribution are invariable. At the same time the intervariant misorientations distribution alters significantly at increasing cooling rate due to martensite fraction increase.

Keywords: EBSD, crystallographic features, bainite-martensite structure, intervariant misorientations, quenching.

Ориентационное соотношение (OC) в превращенной структуре реализуется в виде определенного набора вариантов Vi (i = 1, 2...24) ориентации кристаллов α -фазы по отношению к исходному аустениту, который еще называют спектром межвариантных разориентировок. С изобретением EBSD-метода появилась возможность анализировать разориентировки на границах структурных элементов и строить их

[©] Яшина Е. А., Зисман А. А., Петров С. Н., Золоторевский Н. Ю., 2017

частотные спектры [1]. Такой анализ имеет безусловно и практическую значимость, поскольку вид подобных спектров позволяет надежно идентифицировать разновидности бейнита и мартенсита, а также определять их относительное содержание [2].

Это особенно актуально, т. к. традиционная металлография не всегда позволяет количественно оценивать фазовый состав мартенситнобейнитных сталей. Используя объективность и высокую чувствительность EBSD-анализа к структурному состоянию, в настоящей работе исследуется влияние температуры закалки и скорости охлаждения на фазовый состав превращенной структуры мартенситно-бейнитных сталей.

Образцы длиной 10 мм и диаметром 5 мм, вырезанные из промышленного проката из высокопрочной низкоуглеродистой стали, подвергались закалке на дилатометре DIL805 A/D. Образцы нагревали до разных температур (910 и 960 °C), выдерживали 15 мин, далее проводилось охлаждение со скоростями 5 и 50 °C/с. Металлографический анализ шлифов осуществляли на оптическом микроскопе Meiji Techno. Ориентационные карты структуры анализировали методом EBSD с шагом 0,1 мкм на сканирующем электронном микроскопе Quanta 200 3D FEG.

Согласно дилатометрическим диаграммам, повышение скорости охлаждения с 5 до 50 °C/с понижает температуру начала превращения от 460 ло 410 °C (табл.), что указывает на увеличение лоли низкотемпературной составляющей (мартенсита или нижнего бейнита). Менее значительное снижение температуры начала превращения с 410 до 395 °С также наблюдается при повышении температуры нагрева от 910 до 960 °С. Критические точки определяли по дилатометрическим кривым методом отрыва от касательных.

Таблица

Режим	Температура закалки, °С / скорость охлаждения, °С/с	Температура начала и конца превращения, °С
A15	910 / 5	460–250
A150	910 / 50	410–220
A650	960 / 50	395–205

Режимы закалки и критические точки

По данным оптической микроскопии (рис. 1) повышение температуры закалки с 910 до 960 °С вызывает заметный рост аустенитного зерна; кроме того, повышение скорости охлаждения изменяет соотношение типов бейнита с разной морфологией, но не влияет на дисперсность структуры.

Рис. 1. Микроструктура образцов: *a* – A15, *б* – A150, *в* – A650

Рис. 2. Распределения по углу разориентировки (*a*) и доля границ с разориентировками более 50° (*б*) в образцах высокопрочной стали

Ha 2 распределения рис. приведены разориентировок, С таблицы. Максимальное оответствующие режимам количество большеугловых границ характерно для закалки от 910 °C со скоростью охлаждения 5 °C/с (режим A15), наименьшее – для закалки от 960 °C со скоростью охлаждения 50 °C/с (режим А650). Таким образом, как повышение температуры нагрева, так и увеличение скорости охлаждения приводят к уменьшению доли большеугловых границ в структуре, причем повышение скорости охлаждения с 5 до 50 °С/с понижает долю границ с разориентировками более 50° на 10 %, а одновременное повышение скорости охлаждения и температуры нагрева под закалку на 50 °C приводит к уменьшению доли границ с разориентировками более 50° на 20 %.

На рис. 3 приведены результаты EBSD-анализа в виде спектров межвариантных разориентировок, о формировании которых подробно написано в работе [3]. Эти спектры построены для ориентационного соотношения, которое было предварительно определено методом [4]. Соответствие спектров тем или иным разновидностям бейнита определяли согласно [5].

Для режима A15 получен спектр, характерный преимущественно для низкотемпературного бейнита (явно выраженные пики межвариантных разориентировок V1/V2, V1/V4, V1/V8). Увеличение скорости охлаждения (режим A150) приводит к значительному изменению вида спектра: уменьшается доля V1/V2 и наблюдается рост V1/V4 и V1/V8. Подобный спектр соответствует преимущественно мартенситной структуре. Интересно, что повышение температуры нагрева (режим A650) не оказывает существенного влияния на межвариантные разориентировки: наблюдается некоторое понижение доли V2/V1 при слабом увеличении доли V1/V8. Последняя отражает переход от реечного мартенсита к более высокотемпературным структурам, например, нижнему бейниту.

Рис. 3. Спектры межвариантных разориентировок для режимов: $a - A15, \delta - A150, e - A650$

Выводы, полученные по результатам анализа спектров межвариантных разориентировок, подтверждаются независимым методом, основанным на использовании стандартной EBSD-функции GAM [2]. Согласно этому методу, для режима A15 в структуре присутствует 58 % мартенсита, для режимов A150 и A650 – по 86 % мартенсита (рис. 4).

Рис. 4. EBSD-отображение структуры образцов A15 (*a*), A150 (*б*), A650 (*в*) с помощью функции «Image Quality» и наложения карт кривизны решетки (GAM)

Анализ кристаллографических особенностей бейнитномартенситных структур в зависимости от условий закалки методами EBSD показал следующее:

1. Повышение температуры нагрева под закалку сопровождается ростом аустенитных зерен, понижает долю большеугловых границ, не влияя на спектр межвариантных разориентировок между превращенными кристаллами.

2. Повышение скорости охлаждения, напротив, приводит к преобразованию спектра межвариантных разориентировок, что связано с ростом доли мартенситной составляющей в структуре стали.

Таким образом, анализ по EBSD-данным кристаллографических особенностей бейнитно-мартенситных структур является надежным методом для оценки долей структурных разновидностей α-фазы высокопрочных сталей.

Работа выполнена при финансовой поддержке государства в лице Минобрнауки в рамках соглашения № 14.595.21.0004.

ЛИТЕРАТУРА

- Adams B. L. Orientation imaging: The emergence of new microscopy / B. L. Adams, S. I. Wright, K. Kunze // Metall. Trans.-A. 1993. V. 24 (4). P. 819–831.
- 2. Зисман А. А. Количественная аттестация бейнитно-мартенситных структур высокопрочных легированных сталей методами сканирующей электронной микроскопии / А. А. Зисман, С. Н. Петров, А. В. Пташник // Металлург. 2014. № 11. С. 91–95.
- 3. Влияние размера зерна и деформационной субструктуры на кристаллогеометрические особенности бейнита и мартенсита низкоуглеродистых сталей / Н. Ю. Золоторевский [и др.] // МиТОМ. 2013. № 10 (700). С. 39–48.
- 4. Effect of ausforming and cooling condition on the orientation relationship in martensite and bainite of low carbon steels / N. Yu. Zolotorevsky [et al.] // Mater. Characterization. 2015. V. 107. P. 278–282.
- Takayama N. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel / N. Takayama, G. Miyamoto, T. Furuhara //Acta Materialia. V. 60. 2012. P. 2387–2396.