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Solving Equations of Water Distribution Network by the Continuation Method

Introduction
Municipal water utilities are by far the most common 

users of water distribution mathematical models. Water 
distribution network simulation is used for a variety of 
purposes, such as: long-range master planning, including 
both new development and rehabilitation, fire protection 
studies, water quality investigation, energy management, 
system design, daily operation uses including operator 
training etc. These models are based on the continuity 
and energy equations. For real systems, these equations 
can be numbered in the hundreds.

Note that nowadays solving the network equations 
system is often a part of other algorithms. For example, 
they are used in the genetic algorithms for optimal design 

of a network [1], when the system of equations has to be 
solved many times.

Many modern computer programs for modeling 
of water supply need water demand of consumers to 
be specified prior to the calculation. This is due to the 
fact that the system of equations is solved on the set 
of network flows. At the same time, theoretically it’s 
possible to solve it on the set of heads (hydraulic grade). 
However, in the latter case use of the iterative methods 
leads to emergence of the problem of convergence, and 
the solution cannot be obtained [4–7, 9].

Below, a method of solving the network equations will 
be described, allowing calculating any of its parameters 
with any desired accuracy and with a minimum amount 
of calculations.
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РЕШЕНИЕ УРАВНЕНИЙ РАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ ВОДОСНАБЖЕНИЯ  
МЕТОДОМ ПРОДОЛЖЕНИЯ

Аннотация. Сейчас в распоряжении инженеров имеется большое количество специализированных программ 
для проектирования и моделирования работы распределительных сетей водоснабжения в различных ситуациях. 
Независимо от вида поставленной задачи возникает необходимость решения нелинейной системы уравнений сети. 
Решение осуществляется теми или иными итерационными методами. Иногда при их использовании возникает про-
блема сходимости. Для ее решения необходимо правильно выбирать начальные значения рассчитываемых параметров. 
В данной статье рассматривается решение системы уравнений сети методом продолжения. Метод позволяет рассчиты-
вать любые параметры сети с заданной точностью при практически любых начальных значениях переменных.
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Network equations system
The concept of network is fundamental to a water 

distribution model. The network contains all the 
components of the system and defines the way in 
which those elements are interconnected. Networks 
comprise nodes which represent the features at specific 
locations within the system, and links which define the 
relationships between the nodes.

The node with index i is an element which is 
characterized by head Hi (m). In the node water is 
removed (demand) or added (inflow) from (to) the 
system in an amount of qi (m 3/s).

In general, a functional dependence may exist 
between H and q, for example when the node is an orifice. 
Thus the nodes are such elements as junctions, tanks, 
reservoirs, orifices, hydropneumatic accumulators, etc.

At each node there is a mass balance. The 
balance indicates that the mass going into a node Qinflow �
must be equal to the mass which comes out of the node 
Qoutflow :
 q Q Qinflow outflow= - .  (1)

The link between nodes i and j is characterized by 
water flow Qij . Experience shows that for most types of 
the links [1, 9]:

 H H a b Q Qi j
c- = + -1 ,  (2)

where a, b and c are some coefficients depending on the 
type of the link and the head change model used.

The main types of the links are pipelines. For them in 
expression (2) a = 0, and b has the meaning of resistance. 
If a link is a pump Hi < Hj and a < 0, b > 0.

Consider a simple network (Fig). It consists of five 
nodes, and five links. Four of the links are tubes, one 
link is a pump. Node 2 is a fountain, so the discharge 
rate is a function of the head [7]:

 q C D Hd f2
2

2= ,  (3)

where Cd is the discharge coefficient, Df is the orifice 
diameter (hereinafter, to be more specific, we take  
C Dd f

2  = a2 = 0.0025).
To be specific, the head loss ∆Н calculation will be 

carried out using the Hazen–Williams formula [1]:

 D =H
L

C D
Q

10 7
1 852 4 87

1 852.
. .

. ,  (4)

where L — distance, m; C — Hazen-Williams C-factor; 
D — diameter, m; Q — pipeline flow rate, m 3/s.

The relationship between the pump head and the 
pump discharge is set as (2), where a = a51=24, b = b51 = 
= –2.145×10 4, c = c51 = 3.

An example of water distribution network and its graph



47

vol. 3, № 1
2017

Solving Equations of Water Distribution Network by the Continuation Method

Further on, H5 = H4 = 0, q1 = q3 = 0. All the pipes are 
of equal length L = 100 m, and diameter D = 150 mm, 
Hazen-Williams coefficient C = 130 (cast iron). In this 
case, the coefficients bij = 1340 (except b51).

The system of equations has the form:
 Q q51 5 0- =

 Q Q Q51 13 12 0- - =

 Q Q Q13 32 34 0- - =

 Q Q H12 32 2
0 50 0025 0+ - =. .

 Q q34 4 0- =   (5)

 H Q1
4

51
324 2 145 10- + Ч.

 H H Q Q1 3 13 31

0 852
1340 0- - =

.

 H H Q Q3 2 32 32

0 852
1340 0- - =

.

 H Q Q3 34 34

0 852
1340 0- =

.

 H H Q Q1 2 12 12

0 852
1340 0- - =

. .

Thus, we have ten equations. The unknown values are 
the heads H1, H2, H3, outflow q4, q5 and all the pipeflows 
Qij.

Solving the system of equations
Usually, the continuation method is used to solve 

of differential equations with a parameter. Kane [2] 
proposed to use this method for solving systems of 
nonlinear equations. The method essence consists in 
building and solving a system of ordinary differential 
equations of the first order. Some numerical examples of 
applications of the method are described by Na [3].

As an illustration of the method, let us consider the 
solution of a single equation
 f x( ) = 0.   (6)

As the initial approximation we assume an arbitrary  
x = x* and consider the equation

 f x f x t( ) = ( ) -( )* 1 ,  (7)
where t is a new independent variable changing from  
0 to 1.

If t = 0 then f (x) = f (x*). If t = 1 then f (x) = 0, 
i. e. x is the root of the equation (6). Thus, one should 
expect that when t varies from 0 to 1, x will change from 
the arbitrary initial value x* to the root of the original 
equation.

To find a solution, let us differentiate equation (7) by t

 
df x

dx
dx
dt

f x
( )

= - ( )*   (8)
or

 
dx
dt

f x

df x

dx

= -
( )
( )

*

  (9)

The boundary condition: if t = 0 then x = x*.
As a result of the integration of the equation (9) to 

t = 1 we obtain the solution of the original equation (6).
The method of integration can be arbitrary. However, 

in any case it is necessary to choose the integration step 
Dt allowing the predetermined accuracy to be achieved.

Of course, there are algorithms with automatic step 
selection. However, when it is necessary to solve a system 
of several hundreds of differential equations, these 
algorithms require use of powerful computers.

Our research has shown that considerable gain in 
the amount of computations can be obtained if 
the integration is carried out by the Euler method with 
a step equal to the value of the interval, i. e. when Dt = 1.

After a single calculation we obtain

 x x
dx
dt

** *= + .  (10)

Apparently, this value will be very far from the roots 
of the equation. Therefore, x** should be used as a new 
boundary condition for (9) with the new value f (x*) = 
= f (x**) at the right side, and the integration should be 
repeated once again.

It is important that in this case the derivative value 
dx
dt

 has the meaning of the accuracy of the solution 

and it can be considered as a criterion of completion of 
the calculations.

Let us return to the system of equations (5). All the 
unknown variables are considered as functions of the 
parameter t. We set their initial values (indicated by *) 
and transform the equations to the required form (8). 
As the integration step Dt = 1, the result will have the 
following form:

 
dQ

dt

dq

dt
Q q51 5

51 5- = - -( )* *

 
dQ

dt

dQ

dt

dQ

dt
Q Q Q51 13 12

51 13 12- - = - - -( )* * *

 
dQ

dt

dQ

dt

dQ

dt
Q Q Q13 32 34

13 32 34- - = - - -( )* * *

dQ

dt

dQ

dt
H

dH

dt
Q Q H32 12

2
0 5 2

32 12 2
0 50 00125 0 00125+ - = - + --. .* . * * * .(( )

 
dQ

dt

dq

dt
Q q34 4

34 4- = - -( )* *  (11)

dH

dt
Q

dQ

dt
H Q1 4

51
2 51

1
4

51
36 435 10 24 2 145 10+ Ч = - - + Ч( ). .* * *

dH

dt

dH

dt
Q

dQ

dt
H H Q Q1 3

13

0 852 13
1 3 13 13

0 852
2482 1340- - = - - -* . * * * * .(( )

dH

dt

dH

dt
Q

dQ

dt
H H Q Q3 2

32

0 852 32
3 2 32 32

0 852
2482 1340- - = - - -* . * * * * .(( )
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dH

dt
Q

dQ

dt
H Q Q3

34

0 852 34
3 34 34

0 852
2482 1340- = - -( )* . * * * .

dH

dt

dH

dt
Q

dQ

dt
H H Q Q1 2

12

0 852 12
1 2 12 12

0 852
2482 1340- - = - - +* . * * * * .(( )  

This system is linear with respect to the derivatives, 
and its solution can be found by any method (e. g., using 
matrix operations). After calculation of the derivatives 
boundary conditions are corrected in the same way as 
(10), and the calculation is repeated.

The calculations were performed using the 
spreadsheet and matrix operations. The progress of 
solving of the system (11) is shown in Table (the inflow 
q5 is not shown in table as q5 = Q51). The initial values 
of the parameters are presented in row 0. The solution 
accuracy equal to 0.0001 is attained already after 5 steps. 
According to the formula (3) outflow q2 = 0.084. After 
the sixth step, the error is reduced to 10–6.

The solution of this system can be found under any 
other (even fantastic) boundary conditions.

Conclusions
A modification of the continuation method for 

solving systems of nonlinear algebraic equations is 
proposed. It involves adjusting the boundary conditions 
at each step of the computations. Such approach allows 
moving from solving the system of differential equations 
to solving the system of linear algebraic equations. This 
substantially simplifies the process of finding the solution 
and increases its efficiency.

Application of the continuation method for the 
calculation of water distribution networks eliminates 
most of the problems arising from the application of the 
traditional iteration methods:

•	 there is no need to solve the problem of 
preliminary water distribution in the pipes to 
determine the initial values of the variables;

•	 the network topology analysis is minimized;
•	 the solution can be found quickly and with any 

desired accuracy.
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The progress of solving the system (11)

No Pipeline flow rate, m 3/s Head, m Outflow, 
m 3/s

Q12 Q13 Q32 Q34 Q51 H1 H2 H3 q4

0 0.2 0.2 0.2 0.2 0.2 1 1 1 0.2
1 0.0341 0.1063 0.0198 0.0866 0.1404 5.62 42.07 –3.41 0.0866
2 0.0338 0.0633 –0.0225 0.0858 0.0972 19.47 16.94 14.18 0.0858
3 0.0344 0.0466 –0.0258 0.0723 0.0810 14.16 11.55 10.05 0.0723
4 0.0342 0.0440 –0.0258 0.0698 0.0782 13.78 11.20 9.67 0.0698
5 0.0342 0.0440 –0.0258 0.0698 0.0782 13.77 11.20 9.66 0.0698


