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SAT Solvers for the Problem of Sensor Placement
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Abstract

In this paper we consider an approach to solve the problem of sensor
placement. This approach is based on constructing SAT solvers for
logical models of the problem.
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Many different formalizations of the problem of sensor placement received
a lot of attention recently (see e.g. [1, 2]). Note that sensor placement is exten-
sively used for improved robotic navigation (see e.g. [3, 4, 5]). In particular,
visual landmarks problems are extensively studied in contemporary robotics
(see e.g. [6, 7, 8, 9]). In this paper we consider SAT solvers for logical models
of SP problem (see [2]).

In papers [10, 11, 12, 13, 14] the authors considered some algorithms to
solve logical models (see also [15, 16, 17]). Also, we have obtained explicit
reductions from SP to MAXSAT, SAT and 3SAT (see [2, 18]).

We use algorithms fgrasp and posit from [19]. Also we design our own
genetic algorithm for SAT which based on algorithms from [19].

Consider a boolean function g(x1, x2, . . . , xn) = ∧m
i=1Ci, where m ≥ 1, and

each of the Ci is the disjunction of one or more literals. Let |Ci| be a number of
literals in Ci. Let occ(xi, g) be a number of occurrences of xi in g. Respectively,
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let occ(¬xi, g) be a number of occurrences of xi in g. For example, if g =
(x1∨x2)∧(¬x2∨x3)∧(x1∨x4)∧(¬x1∨x5), then occ(x1, g) = 2, occ(¬x1, g) = 1.

We consider a number of natural principles that define importance of a
variable xi for satisfiability of boolean function g. These principles suggest us
correct values of variables.

1. If occ(xi, g) ≥ 0 and occ(¬xi, g) = 0, then xi = 1.

2. If occ(xi, g) = 0 and occ(¬xi, g) ≥ 0, then xi = 0.

3. If xi = Cj for some j, then xi = 1.

4. Given positive integers p1, p2, . . . , pm, q1, q2, . . . , qm and a set of rational
numbers {αi,u, βi,v | 1 ≤ i ≤ m, 1 ≤ u ≤ pi, 1 ≤ v ≤ qi}. If

∑

1≤j≤m,1≤u≤pj,|Cj |=u

αj,uocc(xi, Cj) ≥
∑

1≤j≤m,1≤v≤qj ,|Cj |=v

βj,vocc(¬xi, Cj),

then xi = 1.

Based on these principles, we can consider the following four types of com-
mands: P1, P2, P3, P4. Also we consider the following three commands for run
algorithms: Try fgrasp, Try posit, and Try ga, where Try ga runs a simple
genetic algorithm.

Denote by R the set of commands of these seven types. Arbitrary element
of R∗ it is possible to consider as a program for finding values of variables of
a boolean function. We assume that such programs are executed on a cluster.

Execution of each of commands of type Pi reduces the number of variables
of a boolean function by one. Execution of each of commands Try fgrasp,
Try posit, and Try ga consists in the run of corresponding algorithm for current
boolean function on a separate set of calculation nodes and the transition to
the next command.

Algorithms fgrasp and posit we run only on one calculation node. Ge-
netic algorithms can be used in parallel execution. We use auxiliary genetic
algorithm which determine the number of calculation nodes.

Initially, we selected a random subset of R∗. We use a genetic algorithm
to select a program from the current subset of R∗ and a genetic algorithm
for evolving the current subset of R∗. The evolution of the current subset of
R∗ implemented on a separate set of calculation nodes. For every subsequent
boolean functions it is used the current subset of R∗ which is obtained by
taking into account the results of previous runs.

We use heterogeneous cluster based on three clusters (Cluster USU, Linux,
8 calculation nodes; umt, Linux, 256 calculation nodes; um64, Linux, 124
calculation nodes) [20].
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Algorithms fgrasp and posit used only for 3SAT. For SAT and MAXSAT
used simple genetic algorithm (SGA), and our algorithm (OA). We create a
generator of natural instances for SP. We consider instances with N and S
from 400 to 600. Selected experimental results are given in Figures 1 – ??.

time fgrasp posit SGA OA
average 56 min 1.03 h 1.26 h 27.38 min
max 18.43 h 16.67 h 28.25 h 13.59 h
best 3.52 min 5.12 min 3.32 min 28 sec

Figure 1: Experimental results for 3SAT

time SGA OA SGA OA
SAT SAT MAXSAT MAXSAT

average 1.17 h 53.12 min 1.14 h 49.29 min
max 26.29 h 17.33 h 32.84 h 25.17 h
best 3.18 min 16 sec 1.09 min 12 sec

Figure 2: Experimental results for SAT and MAXSAT
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