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Abstract

In this paper we consider an approach to solve the longest common
subsequence problem. This approach is based on constructing logical
models for the problem.
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1 Introduction

Algorithms on sequences of symbols are used in many very different applica-
tions, groups (see e.g. [1]), rings (see e.g. [2, 3]), semigroups (see e.g. [4, 5]),
bioinformatics (see e.g. [6]), robotics (see e.g. [7, 8]), compression (see e.g.
[9, 10]), etc. These algorithms now form a fundamental part of computer sci-
ence. Algorithms on sequences of symbols received a lot of attention recently
(see e.g. [11, 12, 13, 14]). In particular, computationally hard problems is
extensively studied (see e.g. [15, 16, 17, 18]). One of the most important
problems in analysis of sequences is the longest common subsequence (LCS)
problem (see e.g. [18]). An approach to solve this problem is described in [18].
This approach is based on constructing a logical model for the longest common
subsequence problem.

In papers [18, 19, 20, 21, 22, 23] the authors considered some algorithms to
solve different logical models (see also [24, 25, 26, 27, 28, 29, 30]). In particular,
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we have obtained an explicit reduction from LCS to PSAT in [18]. In this
paper we consider explicit reductions from LCS to SAT and 3SAT.

In our reductions we use Boolean functions ξ and τ from [18]. Let

ξ′ = ∧1≤i[1]≤m,1≤i[2]≤m,

i[1] �=i[2],1≤j[1]≤|Si[1]|,
1≤j[2]≤|Si[2]|,1≤p≤k

∧1≤l≤|Σ| ((¬y[i[1], j[1], p] ∨ ¬y[i[2], j[2], p]

∨¬x[i[1], j[1], l] ∨ x[i[2], j[2], l])∧
(¬y[i[1], j[1], p] ∨ ¬y[i[2], j[2], p] ∨ x[i[1], j[1], l] ∨ ¬x[i[2], j[2], l])).

Theorem 1. ξ ⇔ ξ′.
Proof. Note that α→ β ⇔ ¬α ∨ β. Hence

(y[i[1], j[1], p] ∧ y[i[2], j[2], p]) → x[i[1], j[1], l] = x[i[2], j[2], l] (1)

is equivalent to

¬(y[i[1], j[1], p] ∧ y[i[2], j[2], p]) ∨ x[i[1], j[1], l] = x[i[2], j[2], l]. (2)

Since ¬(α ∧ β) ⇔ ¬α ∨ ¬β, in view of (2), we obtain that (1) is equivalent to

¬y[i[1], j[1], p] ∨ ¬y[i[2], j[2], p]) ∨ x[i[1], j[1], l] = x[i[2], j[2], l]. (3)

Note that α = β ⇔ (¬α ∨ β) ∧ (α ∨ ¬β). Hence (3) is equivalent to

¬y[i[1], j[1], p] ∨ ¬y[i[2], j[2], p])∨
((¬x[i[1], j[1], l] ∨ x[i[2], j[2], l]) ∧ (x[i[1], j[1], l] ∨ ¬x[i[2], j[2], l])). (4)

In view of α∨ (β∧γ) ⇔ (α∨β)∧ (α∨γ), it is easy to see that (4) is equivalent
to

(¬y[i[1], j[1], p] ∨ ¬y[i[2], j[2], p] ∨ ¬x[i[1], j[1], l] ∨ x[i[2], j[2], l])∧
(¬y[i[1], j[1], p] ∨ ¬y[i[2], j[2], p] ∨ x[i[1], j[1], l] ∨ ¬x[i[2], j[2], l]). (5)

Hence (1) is equivalent to (5). Therefore, ξ ⇔ ξ′.
Theorem 1 gives us an explicit reduction from LCS to SAT.
If |Σ| = 1, then

ϕ′[i, j] = (x[i, j, 1] ∨ z1[1, j, 1] ∨ z1[i, j, 2]) ∧ (x[i, j, 1] ∨ ¬z1[1, j, 1] ∨ z1[i, j, 2])∧

(x[i, j, 1] ∨ z1[1, j, 1] ∨ ¬z1[i, j, 2]) ∧ (x[i, j, 1] ∨ ¬z1[1, j, 1] ∨ ¬z1[i, j, 2])∧
(∧1≤l[1]≤|Σ|,1≤l[2]≤|Σ|,l[1] �=l[2]((¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ z2[i, j, l[1], l[2]])∧

(¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ ¬z2[i, j, l[1], l[2]]))).
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If |Σ| = 2, then

ϕ′[i, j] = (x[i, j, 1] ∨ x[i, j, 2] ∨ z3[i, j, 1]) ∧ (x[i, j, 1] ∨ x[i, j, 2] ∨ ¬z3[i, j, 1])∧

(∧1≤l[1]≤|Σ|,1≤l[2]≤|Σ|,l[1] �=l[2]((¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ z4[i, j, l[1], l[2]])∧
(¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ ¬z4[i, j, l[1], l[2]]))).

If |Σ| = 3, then
ϕ′[i, j] = (∨1≤l≤|Σ|x[i, j, l])∧

(∧1≤l[1]≤|Σ|,1≤l[2]≤|Σ|,l[1] �=l[2]((¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ z5[i, j, l[1], l[2]])∧
(¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ ¬z5[i, j, l[1], l[2]]))).

If |Σ| = 4, then

ϕ′[i, j] = (x[i, j, 1] ∨ x[i, j, 2] ∨ z6[i, j, 1]) ∧ (¬z6[i, j, 1] ∨ x[i, j, 3] ∨ x[i, j, 4])∧

(∧1≤l[1]≤|Σ|,1≤l[2]≤|Σ|,l[1] �=l[2]((¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ z7[i, j, l[1], l[2]])∧
(¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ ¬z7[i, j, l[1], l[2]]))).

If |Σ| > 4, then

ϕ′[i, j] = (x[i, j, 1] ∨ x[i, j, 2] ∨ z8[i, j, 1])∧

(∧3≤l≤|Σ|−2(¬z8[i, j, l − 2] ∨ x[i, j, l] ∨ z8[i, j, l − 1]))∧
(¬z8[i, j, |Σ| − 3] ∨ x[i, j, |Σ| − 1] ∨ x[i, j, |Σ|])∧

(∧1≤l[1]≤|Σ|,1≤l[2]≤|Σ|,l[1] �=l[2]((¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ z9[i, j, l[1], l[2]])∧
(¬x[i, j, l[1]] ∨ ¬x[i, j, l[2]] ∨ ¬z9[i, j, l[1], l[2]]))).

Let ϕ′ = ∧1≤i≤m,1≤j≤|Si|ϕ
′[i, j]. Let

ψ′[1, i, j] = ∧1≤l[1]≤k

1≤l[2]≤k

l[1] �=l[2]

((¬y[i, j, l[1]] ∨ ¬y[i, j, l[2]] ∨ z10[i, j, l[1], l[2]])∧

(¬y[i, j, l[1]] ∨ ¬y[i, j, l[2]] ∨ ¬z10[i, j, l[1], l[2]])),

ψ′[1] = ∧1≤i≤m

1≤j≤|Si|
ψ′[1, i, j],

ψ′[2, i, j, l] = ∧1≤j[1]≤|Si|
j[1] �=j

((¬y[i, j, l] ∨ ¬y[i, j[1], l] ∨ z11[i, j, j[1], l])∧

(¬y[i, j, l] ∨ ¬y[i, j[1], l] ∨ ¬z11[i, j, j[1], l])),
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ψ′[2] = ∧1≤i≤m

1≤j≤|Si|
1≤l≤k

ψ′[2, i, j, l],

ψ′[3, i, j, l] = ∧1≤j[1]≤|Si|
1≤l[1]≤k

j[1]<j

l[1]≥l

((¬y[i, j, l] ∨ ¬y[i, j[1], l[1]] ∨ z12[i, j, j[1], l, l[1]])∧

(¬y[i, j, l] ∨ ¬y[i, j[1], l[1]] ∨ ¬z12[i, j, j[1], l, l[1]])),

ψ′[3] = ∧1≤i≤m

1≤j≤|Si|
1≤l≤k

ψ′[3, i, j, l].

If |Si| = 1, then

ψ′[4, i, l] = (y[i, 1, l]∨z13[i, 1, l]∨z13[i, 2, l])∧(y[i, 1, l]∨¬z13[i, 1, l]∨z13[i, 2, l])∧

(y[i, 1, l] ∨ z13[i, 1, l] ∨ ¬z13[i, 2, l]) ∧ (y[i, 1, l] ∨ ¬z13[i, 1, l] ∨ ¬z13[i, 2, l]).
If |Si| = 2, then

ψ′[4, i, l] = (y[i, 1, l] ∨ y[i, 2, l] ∨ z14[i, 2, l]) ∧ (y[i, 1, l] ∨ y[i, 2, l] ∨ ¬z14[i, 2, l]).

If |Si| = 3, then ψ′[4, i, l] = ψ[4, i, l]. If |Si| = 4, then

ψ′[4, i, l] = (y[i, 1, l] ∨ y[i, 2, l] ∨ z15[i, 1, l]) ∧ (¬z15[i, 1, l] ∧ y[i, 3, l] ∧ y[i, 4, l]).

If |Si| > 4, then

ψ′[4, i, l] = (y[i, 1, l] ∨ y[i, 2, l] ∨ z16[i, 1, l])∧

(∧3≤j≤|Si|−2(¬z16[i, j − 2, l] ∨ y[i, j, l] ∨ z16[i, j − 1, l]))∧
(¬z16[i, |Si| − 3, l] ∨ y[i, |Si| − 1, l] ∨ y[i, |Si|, l]).

Let ψ′[4] = ∧1≤i≤m,1≤l≤kψ
′[4, i, l]. Let

ξ′′ = ∧1≤i[1]≤m,1≤i[2]≤m,

i[1] �=i[2],1≤j[1]≤|Si[1]|,
1≤j[2]≤|Si[2]|,1≤p≤k

∧1≤l≤|Σ| ((¬y[i[1], j[1], p] ∨ ¬y[i[2], j[2], p]∨

z17[i[1], j[1], i[2], j[2], p, l])∧
(¬z17[i[1], j[1], i[2], j[2], p, l] ∨ ¬x[i[1], j[1], l] ∨ x[i[2], j[2], l])∧
(¬y[i[1], j[1], p] ∨ ¬y[i[2], j[2], p] ∨ z18[i[1], j[1], i[2], j[2], p, l])∧
(¬z18[i[1], j[1], i[2], j[2], p, l] ∨ x[i[1], j[1], l] ∨ ¬x[i[2], j[2], l])).
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Let τ ′ = ϕ′ ∧ (∧1≤q≤4ψ
′[q]) ∧ ξ′′.

Theorem 2. τ ⇔ τ ′.
Proof. Since

α ∨ β ⇔ (α ∨ z) ∧ (β ∨ ¬z) (6)

where z is a new variable, it is easy to see that ψ[4] ⇔ ψ′[4] and ξ′ ⇔ ξ′′. Note
that

α⇔ (α ∨ z) ∧ (α ∨ ¬z). (7)

Hence ψ[1] ⇔ ψ′[1], ψ[2] ⇔ ψ′[2], and ψ[3] ⇔ ψ′[3]. In view of (6) and (7), it
is easy to check that ϕ⇔ ϕ′. Therefore, τ ⇔ τ ′.

Theorem 2 gives us an explicit reduction from LCS to 3SAT.
We have obtained explicit reductions from LCS to some variants of satis-

fiability, SAT and 3SAT.
There is a well known site on which solvers for SAT are posted [31]. They

are divided into two main classes, stochastic local search algorithms and im-
proved exhaustive search algorithms. All solvers allow the conventional format
for recording DIMACS boolean function in conjunctive normal form and solve
the corresponding problem [31]. In addition to the solvers the site also repre-
sented a large set of test problems in the format of DIMACS. This set includes
a randomly generated problems of 3SAT.

We have created a generator of natural instances for LCS. Also, we have
used test problems from [31].

We have used algorithms from [31]. Also, we have designed our own genetic
algorithm for SAT which based on algorithms from [31].

We have used heterogeneous cluster based on three clusters (Cluster USU,
Linux, 8 calculation nodes, Intel Pentium IV 2.40GHz processors; umt, Linux,
256 calculation nodes, Xeon 3.00GHz processors; um64, Linux, 124 calculation
nodes, AMD Opteron 2.6GHz bi-processors) [32].

Each test was runned on a cluster of at least 100 nodes. The maximum
solution time was 15 hours. The average time to find a solution was 18.7
minutes. The best time was 29 seconds.
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