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Abstract

In this paper we consider an approach to solve the longest common
subsequence problem. This approach is based on constructing logical
models for the problem.
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1 Introduction

Algorithms on sequences of symbols are used in many very different applica-
tions, groups (see e.g. [1]), rings (see e.g. [2, 3]), semigroups (see e.g. [4, 5]),
bioinformatics (see e.g. [6]), robotics (see e.g. [7, 8]), compression (see e.g.
9, 10]), ete. These algorithms now form a fundamental part of computer sci-
ence. Algorithms on sequences of symbols received a lot of attention recently
(see e.g. [11, 12, 13, 14]). In particular, computationally hard problems is
extensively studied (see e.g. [15, 16, 17, 18]). One of the most important
problems in analysis of sequences is the longest common subsequence (LCS)
problem (see e.g. [18]). An approach to solve this problem is described in [18].
This approach is based on constructing a logical model for the longest common
subsequence problem.

In papers [18, 19, 20, 21, 22, 23] the authors considered some algorithms to
solve different logical models (see also [24, 25, 26, 27, 28, 29, 30]). In particular,
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we have obtained an explicit reduction from LCS to PSAT in [18]. In this
paper we consider explicit reductions from LCS to SAT and 3SAT.
In our reductions we use Boolean functions ¢ and 7 from [18]. Let

= A1<i[l]<m,1<if2]<m, /\1§l§|2\ ((=yli[1], 4[1), p] Vv —yli[2], (2], p]
i[1]#£4[2], 1< (1< Sip
1<[2]<|Sipa [ 1<p<k

Vorlill], g, 0V 2fif2], 5121, A

(=yli], 5001, pI v =ylif2], 5121, p] v li1], g (1], 1] v —efi[2], (2], 1))

Theorem 1. £ & ¢'.
Proof. Note that « — 3 < —a VvV 5. Hence

(yle1], g (1), p] A ylil2], 5121, pl) — 2[i[1], 5[1), 1] = =[i[2], j[2], 1] (1)

is equivalent to

~(yl0L, g0 el Aylif2], 512 p)) v 2li[1], g [U, 1] = 2 (a2, 52, (2)

Since —(a A ) < —a V =, in view of (2), we obtain that (1) is equivalent to

~yli[1], 511, p) v —ylif2], 5020 p)) v 2 (i), 511, 0 = «la2), 20,0 (3)
Note that « = 8 < (—a VvV 3) A (o V —3). Hence (3) is equivalent to
ﬁy[l[l],][l],p] \% ﬁy[l[Z],][Q],p])\/
(2 la1], 5[0, v 2 af2], 5121, 1) A ], g0, 1 v —if2], 512, 10). - (4)

In view of aV (BAY) & (aVB)A(aV7y), it is easy to see that (4) is equivalent
to

(mylalt], 500, ]V =ylif2], 5 (2, p] v (1], 51, 0 v lif2], 5
(ylalt), 50, p] v =ylef2], 512, pl v 2], g, )V —efif2), 5020, 1), (5)

Hence (1) is equivalent to (5). Therefore, £ < ¢'. m

Theorem 1 gives us an explicit reduction from LCS to SAT.
If |¥]| =1, then

(,Ol[l,j] = (I[lv.ﬂ 1] v Zl[lvja 1] \% 21[i7j7 2]) A (x[zhjﬁ 1] \% _'Zl[l’j7 1] \% Zl[iaja 2])/\
(I[i7j7 1]\/21[1’j7 1]\/_'Z1[i7j72]) (I[l Js 1] _'Zl[l’j7 1]\/_'Z1[i7j72])/\
[V =i, g, 12]] V 2, 4, 11 12IDA

______ 5 J 1]
[V =i, 4, 11, 1[2]]))).

(=[i, 5, (1] Vﬂx[i,m 2]
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If |X| = 2, then
O'[i, 7] = (i, 7,1 V x[i, 4, 2] V z3[4, 3, 1)) A (2[4, 7, 1] V x[i, 7, 2] V =23, 4, 1A

(Map<isii<i<isnp (2l 3 ]V 2 [i, 3, 102]] v za[i, 5, 1], 2]])A
(mafi, j, I1]] V —ald, 5, 1[2]) V 2z, 5, 11, 1[2])).
If |5} = 3, then
P'li ] = (Viqem2li, 4. A
(N<p<isii<ip<isana (el 5, ]V ~ali, 5, 120V 2s(i, 4, 1, 12]])A

(mali, 3, 1A}V —ali, 5, 1[2]] Vv —zs[i, 5, 11, 1[2])))).-
If || = 4, then

90/[17.7] = (‘T[Z?ja 1] \% I[i7j7 2] \% 26[i7j7 1]) N (_'Zﬁ[i7j7 1] VZE[i,j, 3] \% I[i7j7 4])/\

(A1§1[1]§\2|,1§l[2]§|Z\7l[1]7&l[2]((_‘x[iaja WAV —afe, 5, 2] V 273, 5, U[1], 2] A

(mafi, g, A0V =i, 5, 121}V =ze[i, 5, 11, 121)))-
If |X| > 4, then
O'iy ] = (x[i,7,1] V x[i, 7,2] V 2s]i, 7, 1))A
(/\3<l<|2| o (728, g, L =21V ali, g, 1]V zs[i, 5, L= 1]))A
(masli, J, 2] = 3]V ali, 4, [Z] = 1] Vv 2[i, j, [S[])A
(/\131[1]g\z|,1gl[2]g|2\,1[1]7e1[2]((ﬂx[zaJ»5[1“ =i, J, 1[2]] V z9[i, 4, I[1], 1[2]]) A
(mafi, g, A1V =i, 5, 11211V =20li, 5, 11, 121))))-
Let @' = A cicmiciess, @16 ] Let
w/[lﬂ Z?]] = /\lél[l]ﬁk((_‘y[iaja l[l]] \4 _‘y[iaja Z[QH \4 ZlO[iaja l[l]v Z[QH)/\

1<i[2]<k
2]

(myld, 3, 1]V =yli, 5, 12]] V =210l 4, 11, 1(2]))),
¢,[1] = Ni<i<m 77Z)/[17i7j]7
1<5<18]
77Z)/[27 i7j7 l] = /\lﬁj[l]ﬂSi\ ((_'y[l, ja l] \ _|y[7/7.][]‘]7 l] \ le[ia ja j[”? l])/\
J[1]#7
(=i, 3,V —yli 31,1V —2ulis g, (1, 1)),



5784 A. Gorbenko and V. Popov

V'[2] = M<i<m V'[2,1,5,1],

1<5<18;]
1<i<k
¢/[3, i:j> l] = AlSj[l]S\Sil ((_‘y[i>j> l] \ _‘y[ia j[1]7 l[l]] \% ZIQ[ia j, j[l]a la l[l]])/\
1<i[1]<k
ill<y
11>l

(e, 5, 11V —yli, g [ U]V =zali, 5, (1, 4 1[L])),
V'[3] = Ni<i<m Y'[3,4, 4, 1].

1<5 <84
1<I<k

If |S;| = 1, then
¢,[4, i, l] = (y[l, ]_, l] \/Zlg[i, ]_, l] \/Zlg[i, 2, l]) A (y[l, 1, l] V_|Zl3[i, 1, l] V213[i, 2, l])/\
(y[Z, 1, l] V Zlg[i, 1, l] V _\213[2', 2, l]) A\ (y[Z, 1, l] V _\Zlg[i, 1, l] V _\Zlg[i, 2, l])
If |S;| = 2, then
40,0 = (yli, 1,10V yli, 2,0V 20ali, 2,00) Al 1,1V yli, 2,1V =z0ali, 2, 1))
If |S;| = 3, then ¢'[4,4,1] = ¢[4,4,1]. If |S;| = 4, then
W[40,0) = (yli, 1,10V yli, 2,0V 2sli, 1) A (~zasliy 1,1 A yli, 3,0 Ayli, 4, 1))
If |S;| > 4, then
1400 = (i, 1,0V yli, 2,0V z6li, 1, DA
(/\3§ i<|S; ,2(_‘216[Z.aj - 27” \ y[l7.]7 l] \ ZIG[iaj - 17l]))/\

ASEH

(mz16d, |55 = 3,0 V yli, [Si| — 1,1V yli, |Si],1]).
Let ¢/'[4] = /\1gigm,1gzgkwl[4ai>l]- Let

§" = Ni<il<m,1<izl<m, N<i<is| ((—yle(1], 5[1], p] v —ylif2], 5 (2], pIV

i[1]#4[2],1<3 <] S5,
1< 2]<| Sz, 1<p<k

27 [e[1], (1], 4(2], 521, p, DA
(=217 [e[1], 511, (2], 521, p, ] v = [i1], G (1) 0] v li[2], 521, DA
(=yli1], 5[], p] v —ylil2], 512], p] V 2slil1], (1], (2], 5 (2], p, E))A
(mzasfe[1], 3011, 402], 52, p, ] v if1], 5 (1), 1] v = fif2], 5 (2], 1))
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Let 7/ = ¢ A (/\1gqg4¢,[‘ﬂ) NE.
Theorem 2. 7 & 7.
Proof. Since
aVpe (aVz)A(BV2) (6)

where z is a new variable, it is easy to see that [4] < ¢'[4] and ¢’ < £”. Note
that

as (aVz)A(aV-z). (7)
Hence ¢[1] < ¢'[1], ¥[2] & ¢'[2], and 9[3] < ¢'[3]. In view of (6) and (7), it
is easy to check that ¢ < ¢'. Therefore, 7 < 7'. O

Theorem 2 gives us an explicit reduction from LCS to 3SAT.

We have obtained explicit reductions from LCS to some variants of satis-
fiability, SAT and 3SAT.

There is a well known site on which solvers for SAT are posted [31]. They
are divided into two main classes, stochastic local search algorithms and im-
proved exhaustive search algorithms. All solvers allow the conventional format
for recording DIMACS boolean function in conjunctive normal form and solve
the corresponding problem [31]. In addition to the solvers the site also repre-
sented a large set of test problems in the format of DIMACS. This set includes
a randomly generated problems of 3SAT.

We have created a generator of natural instances for LCS. Also, we have
used test problems from [31].

We have used algorithms from [31]. Also, we have designed our own genetic
algorithm for SAT which based on algorithms from [31].

We have used heterogeneous cluster based on three clusters (Cluster USU,
Linux, 8 calculation nodes, Intel Pentium IV 2.40GHz processors; umt, Linux,
256 calculation nodes, Xeon 3.00GHz processors; um64, Linux, 124 calculation
nodes, AMD Opteron 2.6GHz bi-processors) [32].

Each test was runned on a cluster of at least 100 nodes. The maximum
solution time was 15 hours. The average time to find a solution was 18.7
minutes. The best time was 29 seconds.
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