Applied Mathematical Sciences, Vol. 6, 2012, no. 14, 675 - 688

Robot Self-Awareness:
Exploration of Internal States
Anna Gorbenko

Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
gorbenko.ann@gmail.com

Vladimir Popov

Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Vladimir.Popov@Qusu.ru

Andrey Sheka

Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Andrey.Sheka@gmail.com

Abstract

A self-aware system has the possibility of dealing with novel situ-
ations more effectively than a system without self-awareness. A self-
aware system can attend to its own internal states, thus providing a
means of generating introspection and self-modification capabilities. A
robot needs a capability to attend to its internal states in order to be
genuine self-aware. Internal states can be made up of emotion, belief,
desire, intention and expectation or it can be processes such as sensa-
tion, perception, conception, simulation, action, planning and thought.
It is crucially important to be aware of its own emotions, perceptions,
beliefs and intentions during the recognition process. Currently, devel-
opments in the field of self-awareness of robots are mainly based on a
mimicry of human internal states. It is difficult for systems developers
to specify specific internal states for all possible conditions and situa-
tions. It is obvious that such systems have very limited opportunities

676 A. Gorbenko, V. Popov and A. Sheka

for self-development. In this paper we consider an approach that allows
the robot to generate their own internal states. These internal states
are not similar to the human internal states. Such property gives the
system of internal states plenty room for self-development. We propose
a new model of genetic algorithm for analysis of robot control system
and generation of new internal states.

Mathematics Subject Classification: 68T40

Keywords: self-awareness, genetic programming, genetic algorithms

1 Introduction

Current Al systems, including robotic systems, are unacceptably brittle in the
face of change. System designers and developers must explicitly specify all
actions and behaviors in order for the system to work as intended such that it
achieves its design goals. In open complex and dynamic environments it be-
comes difficult for systems developers to specify specific actions and behaviors
for all possible conditions and situations. Software development approaches
to structured and well defined problems do not typically scale in complex and
dynamic environments because there is a huge, possibly infinite, number of
possibilities that need to be catered for; it is unreasonable to expect that sys-
tem developers can foresee and develop appropriate responses for all relevant
eventualities. Once deployed, systems are effectively limited by a static set of
instructions that encode their designers understanding, conception and per-
ception of the domain in the form of action and behaviors. As a consequence,
current systems are limited to domain specific applications where they can
perform under a small and finite set of conditions that have been specifically
anticipated and represented in a given application. It is not surprising that
they fail to perform in open complex and dynamic environments.

Even if a robot has no true self-awareness it can have some characteristics
of self-awareness, such as having emotional states or the ability to recognize
itself in the mirror. Such characteristics can significantly improve efficiency of
a robot in open complex and dynamic environments.

A self-aware system has the possibility of dealing with novel situations
more effectively than a system without self-awareness, because it would have
the capacity for introspection that would allow it to inspect and exploit its
representations, e.g. internal state. A self-aware system can attend to its own
internal states, thus providing a means of generating introspection and self-
modification capabilities. A robot needs a capability to attend to its internal
states in order to be genuine self-aware (e.g. [1]). Internal states can be made
up of emotion, belief, desire, intention and expectation or it can be processes

Robot self-awareness 677

such as sensation, perception, conception, simulation, action, planning and
thought. It is crucially important to be aware of its own emotions, perceptions,
beliefs and intentions during the recognition process. Currently, developments
in the field of self-awareness of robots are mainly based on a mimicry of human
internal states (e.g. [1], [2]). Tt is difficult for systems developers to specify
specific internal states for all possible conditions and situations. It is obvious
that such systems have very limited opportunities for self-development. In this
paper we consider an approach that allows the robot to generate their own
internal states. These internal states are not similar to the human internal
states. Such property gives the system of internal states plenty room for self-
development. We propose a new model of genetic algorithm for analysis of
robot control system and generation of new internal states.

2 Self-Awareness

Robotic systems have been developed to be aware of their own motion [3],
[4], able to imitate [5], [6], driven by emotion [2], and able to change their
own models of their physical embodiment [7]. Important work in cognitive
robotics in reasoning about action and reasoning about knowledge [8], [9], [10]
is relevant. In [3] developed an infant-like humanoid robot called NICO that
can recognize its own motion in its visual field, including in a mirror. NICO
expects to see motion in its visual field whenever certain motor movements
commence after a certain time. It learns this time characteristic through ex-
perimentation. It labels motions that appear in the visual field within this
learned time frame as its own motion, thus it can distinguish itself from others
based on the idea of linking motion to time. In [5] considered an approach to
consciousness is to maintain consistency of cognition and behavior of self and
others in order to understand the behavior of self and others. When a system
reaches a state where this behavior of self and others is understood, the system
is deemed to be conscious. They determine that the imitative behavior is ad-
equate for analyzing consistency in cognition and behavior of self and others.
They conducted four experiments using a robot’s imitating actions, including
its own actions in a mirror. The result is that the robot passed a mirror test
with 70% accuracy [6]. Being conscious in this sense, the robot was able to
discriminate itself and others much of the time, however the relationship be-
tween consciousness and awareness in this scenario or context is not discussed
or clarified. In [2] developed the Intelligent Soft-Arm Control (ISAC) robot
that is not self-aware in the sense that it cannot recognize itself in a mirror, but
it can deliberate on its emotions based on memory experience. Self-reflection,
self-awareness and sense-of-self are represented by a self-agent which consists
of a set of agents interacting with memory systems. The emotion that emerges
from an activity of experience is learned and stored in memory systems. When

678 A. Gorbenko, V. Popov and A. Sheka

an event occurs, emotions activate the episodic memory which in turn activates
cognitive control to suppress current behavior and execute required behavior.
Robots have been developed that exhibit an adaptation capability for their own
body [7]. These robots can recover from damage or failure that occurs to their
body. A robot continuously creates a concept of its own physical structure
(self-modeling) and uses this self-model to generate forward locomotion with
four legs initially without knowing what its body actually looks like. When the
robot’s structure changes unexpectedly, it can reform its internal self-model
to generate new behaviors to compensate and accommodate these changes. In
this case, it remodels the concept of its own physical structure to generate
forward locomotion with three legs when one of its legs is removed. This is
possible because it has a model of its own physical structure. In [1] explored
robot self-awareness and the role that attention plays in the achievement self-
awareness and proposed a new attention based approach to self-awareness. In
particular, in [1] provided a new self-modifying framework for developing an
attentive robot with self-awareness based on an architecture that supports the
ability of a system to focus attention on the representation of internal states.

Many of current approaches do not focus on directing a robot’s attention to
its own internal processes. If we add an attention process to a robot so that it
can focus on processes that happen internally during self-recognition activities,
then we would consider it to be self-aware. What is crucially important is not
the ability to recognize itself in a mirror, but rather to be aware of its own
internal states. If a robot has totally lost all of its outward facing sensations,
it may not be aware of its environment, however it can still be aware of itself.

Following [1] we define self-awareness to be the capability of an agent to
focus attention on the representation of internal states. However, in contrast
to [1] we are not trying to describe any specific internal states, such as emo-
tion, belief, desire, intention, expectation, sensation, perception, conception,
simulation, action, planning, thought, etc. Also, we do not try to interpret
the semantics of internal states of a robot in some natural language. Since
self-awareness needed to improve efficiency of a robot in open complex and
dynamic environments, a capability to understand the sense of internal states
of a robot is not essential to achieve the goal. Moreover the need to understand
internal states of a robot makes the problem immeasurably more difficult. For
example, we know that children can learn to walk. We even know how to teach
them to walk. But we can not teach a robot in the same way, because we do
not fully understand the proper sequence of internal states of a child.

Regardless of an approach to definition of internal states it is clear that
internal states are some states of the robot control system and computing
resources or changes of these states. Therefore, as internal states we con-
sider precisely states of the robot control system and computing resources and
changes of these states.

Robot self-awareness 679

Figure 1: Robot Kuzma-II.

3 Mobile Robot Testbed

We have been implementing our approach and framework on the robot Kuzma-
IT (see Figure 1). Design of this robot based on the well-known Johnny 5
Robot [11]. By utilizing heavy duty polypropylene and rubber tracks with
durable ABS molded sprockets the robot has excellent traction. It includes two
12vdc 50:1 gear head motors and the Sabertooth 2 x 5 R/C motor controller.
The body of Johnny 5 Robot wasn’t used. The original panels of Johnny
5 Robot were replaced with panels of a large area (30 x 33 cm) of stainless
steel. This allowed us to significantly increase the payload of the robot. Also,
it provided a much greater structural strength. The robot is equipped with
one or more batteries AcmePower UC-5. Also used a standard laptop battery.
The electronic system based on SSC-32 microcontroller. Onboard computer of
this robot is Asus Eee PC 1000HE with OS Windows XP SP2. The robot is
equipped with a 2 DOF robotic camera (USB web camera Live! Cam Video
IM Pro (VF0410)). Using a wireless connection robot has access to resources
of a cluster. We use heterogeneous cluster based on three clusters (Cluster
USU, Linux, 8 calculation nodes, Intel Pentium IV 2.40GHz processors; umt,
Linux, 1664 calculation nodes, Xeon 3.00GHz processors; um64, Linux, 128
calculation nodes, AMD Opteron 2.6GHz bi-processors) [12].

The basic robot control system developed in Java. This system is designed
to work with devices. Intelligent functions assigned to the advanced robot
control system. This system developed using the C# programming language
on the NET 2.0 framework. The robot uses a visual navigation system. The
advanced robot control system can automatically generate recognition modules
for specific tasks and specific environments. The only criterion that determines
the need for generating new module is the quality of recognition. If current
module provides detection of low quality, then the system generates a new
module based on neural networks. If current module provides detection of
high quality, then the system generates a new module based on simpler neural
networks or threshold schemes.

Gridworlds are popular testbeds for planning with incomplete information.

680 A. Gorbenko, V. Popov and A. Sheka

In [13] studied a fundamental planning problem, localization, to investigate
whether gridworlds make good testbeds for planning with incomplete informa-
tion. In [13] found empirically that greedy planning methods that interleave
planning and plan execution can localize robots very quickly on random grid-
worlds or mazes. Thus, they may not provide adequately challenging testbeds.
On the other hand, in [13] showed that finding localization plans that are
within a log factor of optimal is NP-hard. Thus there are instances of grid-
worlds on which all greedy planning methods perform very poorly. In [13]
showed how to construct them. These theoretical results help empirical re-
searchers to select appropriate planning methods for planning with incomplete
information as well as testbeds to demonstrate them. In our investigations we
use the localization problem as the primary objective of our robot. We use hard
instances of this problem. Our gridworlds marked with colored skittles (see
Figure 1). Accordingly, the robot uses skittles as landmarks. We use different
sets of colors for stimulation of generation of new recognition modules.

Kuzma-IT has a robust design. It is suitable for many hours of experi-
ments in autonomous mode. The robot control system capable to rapid self-
modification. It is clear that if we observe changes of the robot control system
and its performance, then we find the dynamically changing world which pro-
vides us well testbed for our investigations.

4 Exons and Introns

In this section we consider biological observation which used for chromosome
representations of individuals for genetic algorithms used to solve the previ-
ously considered problem. DNA and proteins are polymers, constructed of
subunits known as nucleotides and amino acids, respectively. The sequence
of each protein is a function of a DNA sequence which serves as the gene for
that protein. The cellular expression of proteins proceeds by the creation of a
message copy from the DNA template into a closely related molecule known as
RNA. This RNA is then translated into a protein. One of the most unexpected
findings in molecular biology is that large pieces of the RNA are removed before
it is translated further. In the 1960s non-bacterial ribosomal RNAs were found
to be synthesized as a long precursor RNA which was subsequently processed
by the removal of apparently functionless internal “spacer” sequences. In the
1960s a similar processing was found to apply to eukaryotic precursor messen-
ger RNAs [14]. In the mid 1970s it was found that the some of the internal
sequences interrupted the protein-encoding part of the corresponding mRNAs.
The majority of eukaryotic genes display a complex structure in which code
for protein are interrupted by intervening, non-coding sequences. Initial tran-
scription of these genes results in a pre-message RNA molecule from which
segments must be accurately removed to produce a translatable message. The

Robot self-awareness 681

retained sequences are known as exons (see [15]), while the removed sequences
are known as introns. Therefore, we can consider a complex structure in which
code are interrupted by intervening, non-coding sequences.

5 Genetic Programming Model of Exploration
of Internal States

The main idea of genetic programming consists in the adaptation of biological
evolutionary models for use in software systems. The basic operating ele-
ment in the genetic programming is a chromosome that is responsible for the
configuration of a system. Chromosome consists of genes, each of which is re-
sponsible for a certain parameter of the system. Over a set of chromosomes an
evolutionary mechanism operates providing variation, heritability and natural
selection. To ensure the heritability in the population used crossover operator
which creates a new chromosome by using the genes of two parental chromo-
somes. Variability is achieved through the use of mutation operator, which in
some way alter the genes of chromosomes. Natural selection in populations is
based on a fitness function of chromosome.

In models of artificial evolution is possible to use models of genes that differ
from the biological gene that gives significant advantages for some problems.
In the simplest case, we introduce genes as a sequence of bits that encodes
the state of the system. This model is the most convenient in terms of data
presentation. However, it is not always convenient in terms of application use.
More complex model proposes to consider genes as a sequence of abstractions.
It may be, for example, graphs, strings, sequences of real numbers. Such
model allows a gene to provide information about the system in its original
form, without intermediate transformation. More complex model of the gene
allows us to allocate the introns and exons.

According to our biological model of genetic programming exons are respon-
sible for direct configuration of the system, introns contain meta information
about ongoing evolutionary processes. Note that exons in its configuration
does not differ from genes in the previous model. In view of the fact that
introns contain information obtained as a result of evolutionary changes in the
gene, they must be closely related to evolutionary mechanisms. Therefore,
it is necessary to consider the function of an intron jointly with operators of
crossover and mutation. Note that in order to upgrade of the approach we
can also consider some functions of introns which linked to other parts of the
evolutionary mechanism.

When analyzing the functions of introns in the biological model, we iden-
tified the following roles of introns for applications:

1. Connectivity of genes. In the process of evolution there are situations

682 A. Gorbenko, V. Popov and A. Sheka

when certain genes show good results in aggregate. However, individ-
ual genes do not affect positive on properties of the system. Therefore
appropriate to use introns to associate genes. Due to this evolutionary
operators receive information about features of genes. This allows them
efficiently move, store, and change properties of the system.

2. Statistical container. With the help of introns, we are able to save statis-
tical information on the gene. Using this information we can stimulate
evolutionary processes.

3. Revision history. During the evolution genes changed. These changes
itself are useful. If we know changes that have occurred we have pos-
sibility to build their strategy based on the evolution. If we need to
maximally preserve inheritance, then we can recover genes from history.
If we pursue the goal of maximum variability in generations, then we
need to avoid overlaps with genes from history.

From the point of storage, introns is conveniently considered as a set of
objects. Evolutionary operators respond only to those objects from the set
with which they can work, but others simply ignore it. Thereby possibly
changing the set of operators directly during the evolution which makes it
possibility to guide an evolution in the right direction.

From the point of representation of software package in the evolutionary
model chromosomes is a system configuration. Class of agents is a set of agents
that meet a certain standard input and output data. Type of gene is an agent
with the set of possible options. Instance of the gene is an agent with certain
parameters. Thus each generation of evolution corresponds to some change of
robot control system. In our case we use the generator of recognition modules
for modification of robot control system. The results of the genetic algorithm
we use as an external stimulus to change one or more recognition modules.

Note that a crossover operator can be arranged over instances of a gene of
one type only in the presence of two or more independent parameters of the
agent. Generally, mutation operator replaces current copy of a gene by other
gene of the same type. Genes encode the information that applies to each of
three subsystems of the agent. Since subsystem is defined at the time of the
designing of an agent, information that can be stored in a gene is a collec-
tion of some of constants that are responsible for configuring of subsystems.
Operators of mutation and crossover for predefined systems are defined in a
natural way. Employed subsystems are agents that can be activated by the
parent agent from some class of agents. Note that over time the number of
agents which belong to the same class can be changed. For the organization
of correct operations of evolutionary mechanism employed subsystems must
promptly update an information on the set of agents which are included in

Robot self-awareness 683

classes. In addition, we need to adjust crossover and mutation operators so
that they can work correctly with all agents of a given class. Note that for em-
ployed subsystems crossover and mutation operators constructed on the basis
of operators which used at work with sets. Let f(x) be a function which is
responsible for the quality of solutions. Let g(z) be a function which is respon-
sible for the used computational resources. To deployment of an evolutionary
mechanism it is necessary to have an unified fitness function. Of course, we
can consider as a fitness function, for example, f(x)g(z) or f(x)(g(z)+ f(x)).
However, in this case the fitness function will have a misty sense. Our experi-
ments showed that the best results are achieved when using f(x) as the fitness
function. With such fitness function values of g(z) are encoded in introns.

6 Computational Experiments

For our computational experiments, we chose the population size, the number
of classes and the variety of agents in each class to be 10, 6, and 10, respec-
tively. For computational experiments, we developed a system for prediction
of performance. Work of our genetic algorithm continues until there was an in-
crease of values of the fitness function. In each experiment, genetic algorithms
find the best possible configuration of the system at 30 generations.

We compared results of genetic algorithm for real measurements of perfor-
mance (see Figure 2) and for data which obtained from the system for predic-
tion of performance (see Figure 3). Our experiments showed that results for
real measurements of performance and for data which obtained from the sys-
tem for prediction of performance differ insignificantly. In particular, results of
the genetic algorithm, which started from population which obtained using the
system for prediction of performance, for real measurements of performance is
presented in Figure 4.

7 The c-Fragment Longest Common Subsequ-
ence Problem

As mentioned above, the best results are achieved when using f(x) as the
fitness function. In this case values of g(z) are encoded in introns. Since g(z)
is a function which is responsible for the used computational resources, it is
natural to consider g(x) as some characteristic of internal states of the robot.
The robot can demonstrate the same performance, but at the same time it
can be in a substantially different internal states. To analyze internal states of
the robot and to investigate the dynamics of their changes, we introduce the
following new combinatorial problem.

684 A. Gorbenko, V. Popov and A. Sheka

Generation | Chromosome | Agent Fitness

1 1 558287 | 3.1269594118791555E-10
558234 | 1.4416066826577117E-9
559284 | 1.5719790987161234E-8
558984 | 2.0802415095987675E-9
058284 | 2.8002600036883247E-9
725151 | 6.7683280447743205E-9
725157 | 1.4562709159476911E-8
725151 | 3.639743102798477E-8
725150 | 5.961161755534219E-8
727151 | 1.7926351339250583E-8

20 871663 | 1.2591806364297917E-5
871668 | 7.73848123797181E-5
871620 | 7.642266973803008E-6
871690 | 1.7081796667793985E-5
971660 | 7.628818116329376E-5
878660 | 2.1604965555893806E-6
872360 | 1.2006609272865991E-4
172660 | 3.9118136227531894E-5
872660 | 7.965441672272984E-5
872660 | 1.419790015634894E-4

30 802362 | 9.664436419503133E-5

807360 | 9.115564906047902E-5
802360 | 1.884639449129221E-4
802360 | 1.6265194628480197E-4
802360 | 1.0404586494822476E-4
902360 | 6.138852814213215E-5
802300 | 6.151080437663375E-5
802360 | 1.3983212098514318E-4
802360 | 1.0835102666928983E-4
802360 | 9.562119409621382E-5

5O 00U W SO0 OO W RS © 000 U W

Figure 2: Results of genetic algorithm for real measurements of performance.

Given two sequences S and T over some fixed alphabet ¥, the sequence T’
is a subsequence of S if T' can be obtained from S by deleting some letters from
S. Notice that the order of the remaining letters of S bases must be preserved.
The length of a sequence S is the number of letters in it and is denoted as
|S]. Given two sequences S; and Sy (over some fixed alphabet ¥), the classic
longest common subsequence problem (LCS) asks for a longest sequence T
that is a subsequence of both S; and Sy. We consider the c-fragment longest
common subsequence problem (see e.g. [16]) which is a special case of LCS:

Robot self-awareness

Generation

Chromosome

Agent

Fitness

1

1

906124
906124
936124
906184
936124
394040
394045
394040
394040
394040

8.352839058261439E-7
8.352839058261439E-7
4.089569606797197E-7
1.0741894471864074E-6
4.089569606797197E-7
1.529745975894662E-7
8.315983586087238E-8
1.529745975894662E-7
1.529745975894662E-7
1.529745975894662E-7

20

801562
801562
801582
801566
801542
802562
802562
802562
802562
803562

1.539983774271137E-4

1.539983774271137E-4
1.7176128803758332E-5

6.728819044756761E-5
2.6428726599364868E-5
1.3172984666916108E-4
1.3172984666916108E-4
1.3172984666916108E-4
1.3172984666916108E-4
1.0401028041069673E-4

30

5O 000U WSS O 0O U W RS © 000 U W

801562
801532
804562
001562
801542
801562
801562
801462
801569
801563

1.539983774271137E-4
1.603822352629095E-5
9.755845680833868E-5
3.8033472907018084E-5
2.6428726599364868E-5
1.539983774271137E-4
1.539983774271137E-4
9.79603863101633E-5
1.067925128587828E-4
1.7409211251253976E-5

685

Figure 3: Results of genetic algorithm for data which obtained from the system
for prediction of performance.

FLCS:

INSTANCE: An alphabet 33, sequences S and S, S, 5 € X*, where S1 and
Sy are divided into fragments of lengths exactly ¢ (the last fragment can have

a length less than c).

TASK: Find a longest common subsequence T of S1 and Sy such that the
allowed matches are those between fragments at the same location.

Note that the longest common subsequence is a classical distance mea-

686 A. Gorbenko, V. Popov and A. Sheka

Generation | Chromosome | Agent Fitness

1 1 801562 | 9.986022804193584E-5
801522 | 9.448180495309388E-6
801562 | 1.0758946073448435E-4
805562 | 7.655306692847537E-5
801562 | 1.0638539095731142E-4
801562 | 1.0870067611647092E-4
804562 | 6.597716897967614E-5
801562 | 1.1417571985732377E-4
801562 | 1.0826140079050429E-4
801522 | 9.227518633880476E-6
801662 | 1.1181214119124201E-4
831662 | 5.046903454959181E-5
801662 | 1.1821804511365691E-4
801662 | 7.747813282374215E-5
801672 | 7.433738955230544E-5
801662 | 7.638092426861063E-5
801662 | 1.1487742553431696E-4
811662 | 4.8893036598293416E-6
801262 | 6.0732268759693924E-5
801662 | 1.1587933458492471E-4
802662 | 9.283647319991188E-5
808662 | 1.8277743017402426E-6
301662 | 3.1582167303904335E-6
801662 | 1.0871058708515887E-4
801642 | 1.7640621053528226E-5
861662 | 3.983929780367871E-5
801662 | 8.612628488280334E-5
851662 | 1.621997644500425E-5
401662 | 5.281334905991253E-5
801662 | 7.391434896658494E-5

20

30

5O 000U WSS O 0O U W RS © 000 U W

Figure 4: Results of the genetic algorithm, which started from population
which obtained using the system for prediction of performance, for real mea-
surements of performance.

sure for strings. Our special case of LCS needed for accurate comparisons of
parts of introns. For the initial comparison it is sufficient to consider FLCS.
However, for our experiments, more accurate information is provided by con-
sideration of FL.CS for k£ subsequences. In our investigations and experiments,
to analyze internal states of the robot, we consider only similarity of introns.
However, plenty of room for further investigations reserves consideration of

Robot self-awareness 687

dissimilarity of introns. For instance, it is interesting to consider such prob-
lems as the longest common non-supersequences problem, the shortest common
non-subsequence problem, etc [17].

8 Conclusion

In this paper we have just outlined a framework for further research in the
field of self-awareness on the basis of machine-oriented internal states. In
particular, we proposed a new model of genetic algorithms which based on the
use of exons and introns. These genetic algorithms allow to investigate internal
states of a robot. Experiments discussed in this paper showed that such genetic
algorithms can be used to generate new internal states. In particular, our
approach allows the robot to generate their own internal states. These internal
states are not similar to the human internal states. Such property gives the
system of internal states plenty room for self-development. We propose a new
model of genetic algorithm for analysis of robot control system and generation
of new internal states.

ACKNOWLEDGEMENTS. The work was partially supported by An-
alytical Departmental Program ”Developing the scientific potential of high
school” 2.1.1/14055.

References

[1] R. Novianto and M.-A. Williams, The Role of Attention in Robot Self-
Awareness, The 18th IEEE International Symposium on Robot and Hu-
man Interactive Communication, (2009), 1047-1053.

2] K. Kawamura, W. Dodd, P. Ratnaswasd, and R.A. Gutierrez, Devel-
opment of a robot with a sense of self, Proceedings of the 2005 IEEE
International Symposium on Computational Intelligence in Robotics and
Automation, (2005), 211-217.

[3] P. Michel, K. Gold, and B. Scassellati, Motion-Based Robotic Self-
Recognition, IEEE/RSJ International Conference on Intelligent Robots
and Systems, (2004), 2763-2768.

[4] A. Gorbenko, V. Popov, and A. Sheka, Robot Self-Awareness: Temporal
Relation Based Data Mining, Engineering Letters, 19 (2011), 169-178.

[5] T. Suzuki, K. Inaba, and J. Takeno, Conscious robot that distinguishes
between self and others and implements imitation behavior, Proceedings
of the 18th international conference on Innovations in Applied Artificial
Intelligence, (2005), 101-110.

688

[6]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

A. Gorbenko, V. Popov and A. Sheka

J. Takeno, K. Inaba, and T. Suzuki, Experiments and examination of
mirror image cognition using a small robot, Proceedings of the 2005 IEEE
International Symposium on Computational Intelligence in Robotics and
Automation, (2005), 493-498.

J. Bongard, V. Zykov, and H. Lipson, Resilient machines through contin-
uous self-modeling, Science, 314 (2006), 1118-1121.

R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi, Reasoning about
knowledge, MIT Press, Cambridge, 2003.

H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R.B. Scherl,
GOLOG: A logic programming language for dynamic domains, The Jour-
nal of Logic Programming, 31 (1997), 59-83.

R. Reiter, Knowledge in action: logical foundations for specifying and
implementing dynamical systems, MIT Press, Cambridge, 2001.

http://www.lynxmotion.com/c-103-johnny-5.aspx
http://parallel.imm.uran.ru/mve_now/hardware /supercomp.htm

C. Tovey, and S. Koenig, Gridworlds as Testbeds for Planning with In-
complete Information, Proceedings of the AAAI Conference on Artificial
Intelligence, (2000), 819-824.

K. Scherrer, G. Spohr, N. Granboulan, C. Morel, J. Grosclaude, and C.
Chezzi, Nuclear and cytoplasmic messenger-like RNA and their relation
to the active messenger RNA in polyribosomes of HeLa cells, Cold Spring
Harbor Symposia Quantitative Biology, 35 (1970) 539-554.

W. Gilbert, Why genes in pieces? Nature, 271 (1978), 501.

V. Popov, Arc-preserving subsequences of arc-annotated sequences, Acta
Universitatis Sapientiae. Informatica, 3 (2011), 35-47.

L. Zhang, On the approximation of longest common nonsupersequences
and shortest common nonsubsequences, Theoretical Computer Science,
143 (1995), 353-362.

Received: September, 2011

