УДК 669.017

П. А. Горбатова

 $\Phi\Gamma$ AO BO Казанский (Приволжский) федеральный университет, г. Казань *gpolinaa@mail.ru*

Научный руководитель – проф., д-р физ.-мат. наук В. В. Парфенов

ИССЛЕДОВАНИЕ ДОПИРОВАНИЯ ТИТАНАТА БАРИЯ РЕДКОЗЕМЕЛЬНЫМИ ЭЛЕМЕНТАМИ

КИЦАТОННА

Работа посвящена исследованию сегнетоэлектрических свойств титаната бария, допированного оксидами редкоземельных элементов для снижения уровня диэлектрических потерь. Выполнен синтез образцов BaTiO₃+Ln по стандартной керамической технологии. Проведены измерения температурных зависимостей диэлектрической проницаемости, тангенса угла потерь и удельного сопротивления образцов, допированных катионами Nd иTb.

Ключевые слова: титан редкоземельные элементы, сегнетоэлектрические свойства, удельное сопротивление

ABSTRACT

The work is devoted to investigation of the ferroelectric properties of barium titanate doped with rare earth oxides to reduce dielectric loss. We synthesized samples BaTiO₃ + Ln by the standard ceramic technology. The temperature dependence of the dielectric constant, dissipation factor and resistivity of samples doped with cations Nd and Tb is measured.

Keywords: titan, rare-earth elements, ferroelectric properties, specific resistance

Титанат бария сегнетоэлектрик, ПО своему техническому занимающий [1].применению одно ИЗ ведущих мест характеризуется высокими значениями диэлектрической проницаемости (до 10^4); на его основе разработано несколько типов сегнетоэлектрической керамики, используемых для создания конденсаторов, пьезоэлектрических датчиков, позисторов [2; 3].

Данная работа посвящена исследованию влияния допирования титаната бария редкоземельными элементами для снижения уровня диэлектрических потерь, а также повышению коэффициента управляемости диэлектрической проницаемости электрическим полем, исследованию сегнетоэлектрических свойств полученных образцов.

Синтез композитов $BaTiO_3 + Ln$, где Ln –редкоземельный элемент из ряда лантаноидов, выполнен по керамической технологии из порошка

[©] Горбатова П. А., 2015

сегнетоэлектрика — титаната бария и порошков Nd_2O_3 , Tb_4O_7 , Gd_2O_3 в концентрациях 5 и 10 масс. %. Порошки были растерты в агатовой ступке с использованием 5 % органической связки — поливинилового спирта. Полученная смесь спрессована при давлении 400 МПа. Образцы спекались в атмосфере воздуха, 6 часов при температуре 1200 °C.

На рис. 1 представлены температурные зависимости диэлектрической проницаемости образцов титаната бария, допированного 5 масс. % (1) и 10 масс. % (2) Nd_2O_3 , Tb_4O_7 и Gd_2O_3 . При допировании титаната бария 5 масс. % оксидов РЗЭ наблюдается уменьшение диэлектрической проницаемости на 50%, по сравнению с исходным образцом. При допировании 10 масс. % диэлектрическая проницаемость при комнатной температуре уменьшается в 2 раза для титаната бария с примесями Nd_2O_3 , Gd_2O_3 . Для титаната бария, допированного оксидом тербия, диэлектрическая проницаемость при комнатной температуре остается примерно равной величине є исходного титаната бария возрастает на 18 при сегнетоэлектрического фазового перехода ($\epsilon = 550$ для исходного титаната бария). Температура фазового перехода сегнетоэлектрик-параэлектрик (Тс) при допировании смещается в сторону высоких температур на 2-3 °C. В диапазоне температур от комнатной до Тс величина диэлектрической проницаемости практически не зависит от температуры допированных образцов (кроме образца BaTiO₃ + Tb₄O₇ с концентрацией 10 масс. %).

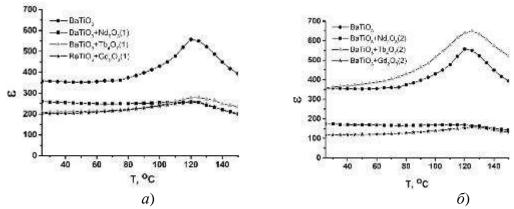


Рис. 1. Температурные зависимости диэлектрической проницаемости образцов $BaTiO_3$ + Ln (Nd, Tb и Gd с концентрацией: a) 1 – 5 масс. %; δ) 2 – 10 масс. %

На рис. 2 представлены температурные зависимости тангенса угла потерь титаната бария, допированного 5 масс. % (a) и 10 масс. % (δ) Nd₂O₃, Tb₄O₇ и Gd₂O₃. Тангенс угла потерь образцов, допированных Nd₂O₃ и Gd₂O₃, практически равен тангенсу угла потерь исходного титаната бария и не зависит от концентрации допирующего компонента и от температуры (в пределах от комнатной температуры до Tc). Исключение составляют образцы титаната бария, допированного Tb₄O₇. Для образца допированного 5 масс. % Tb₄O₇ величина D при комнатной температуре соответствует

величине D исходного титаната бария и монотонно растет с увеличением температуры.

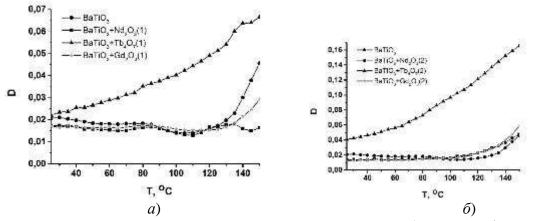


Рис. 2. Температурные зависимости тангенса угла потерь образцов BaTiO₃+Ln (Nd, Tb и Gd с концентрацией: a) 1 - 5 масс. %; δ) 2 - 10 масс. %

Для образца с концентрацией допирующей примеси Tb_4O_7 10 масс. % величина D при температуре 25 °C в 2 раза выше чем у исходного титаната бария. С увеличением температуры D растет и достигает величины 0,12 при Tc. Это может быть связано с меньшей величиной электрического сопротивления образцов, допированных оксидом тербия по сравнению с другими образцами и уменьшением сопротивления с ростом температуры, характерным для полупроводников и диэлектриков.

С целью проверки этого предположения было измерено сопротивление образцов $BaTiO_3(Nd)$ и $BaTiO_3(Tb)$. Для 1 и для 2 образца наблюдается уменьшение удельного сопротивления с ростом температуры. Для образца $BaTiO_3(Nd)$ величина удельного сопротивления падает с $5MOm^*m$ (при комнатной температуре) до 4,27 Mom^*m при Tc. Для образца $BaTiO_3(Tb)$ величина удельного сопротивления падает с 850 к Om^*m (при комнатной температуре) до 17 кOm при Tc.

Величина диэлектрической проницаемости и тангенс угла потерь практически не зависит от частоты внешнего электрического поля во всем диапазоне измерений ($25\Gamma_{\rm II}-1M\Gamma_{\rm II}$).

ЛИТЕРАТУРА

- 1. Ржанов А. В. Титанат бария новый сегнетоэлектрик / А. В. Ржанов // Успехи физических наук. 1949. Т. 38. Вып. 4.
- 2. Веневцев Ю. Н. Сегнето- и антисегнетоэлектрики семейства титаната бария / Ю. Н. Веневцев, Е. Д. Политова, С. А. Иванов. М.: Наука, 1985. 249 с.
- 3. Pithan C. Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC [Text] / C. Pithan, D. Henings, R.Waser // J. Appl. Ceram. Technol. 2005. V.2. P. 1–14.