Transients in a Circulating Fluidized Bed Boiler

A. P. Baskakov, V. A. Munts, and E. Yu. Pavlyuk
Ural Federal University, ul. Mira 19, Yekaterinburg, 620002 Russia

Abstract—Transients in a circulating fluidized bed boiler firing biomass are considered. An attempt is made to describe transients with the use of concepts applied in the automatic control theory. The parameters calculated from an analysis of unsteady heat balance equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology. It is demonstrated that these equations describe the transient modes of operation with good accuracy. Dependences for calculating the time constants of unsteady processes are obtained.

Keywords: fluidized bed, circulating fluidized bed, transients, biomass, boiler, circulation ratio, temperature

DOI: 10.1134/S0040601513110025

Operation of circulating fluidized bed (CFB) boilers is described in detail in many individual publications, as well as in monographs, e.g. [1–3]. However, transients in such boilers are addressed only in a few works [4–6]. These processes need a more detailed study, in particular, for development of automatic closed-loop control systems. An attempt is made in this work to describe transients using the automatic closed-loop control analysis methods. The parameters calculated during an analysis of suitable unsteady equations are compared with the experimental data obtained in the 12-MW boiler of the Chalmers University of Technology in Sweden.

DESCRIPTION OF BOILER OPERATION

The 13.5-m-high boiler furnace is made of membrane-type waterwalls (Fig. 1). The waterwalls installed on the two opposite walls in the furnace lower part with a cross section of $1.4 \times 1.4 \, \text{m}^2$ and higher in the transport zone with a cross section of $1.4 \times 1.7 \, \text{m}^2$ are lined with refractory material. The cyclone with an inner diameter of 2 m is lined from inside with the same material. The heat-transfer surface in the transport zone has an area of 30 m². Particles from the cyclone enter into a lock composed of fluidized particles, from which they return into the furnace in bypass of an external cooler of particles, which was not used in these experiments (in firing biofuel). The boiler is fitted with a system for acquiring primary data that allows information to be received from several hundred measurement points. Sand with an average size of particles equal to 0.3 mm, which is used as bed inert material, is fluidized by primary air, and fluidizing air from the lock is also fed to the furnace. Secondary air is admitted into the furnace through nozzles placed at a height of 2.2 m from the air distribution grate.

The combustion products moved in the furnace with a velocity essentially higher than the terminal velocity of the majority of sand particles. This circumstance led to intense agitation of particles and strong circulation over the furnace—cyclone—lock—furnace loop. The experiments that had previously been carried out on that boiler showed the following.

(i) A fluidized bed with porosity $\varepsilon \approx 0.6$ exists in the furnace bottom part; its height H_{fb} was maintained by supplying sand and was equal to 0.7 m.

(ii) A zone of splashes locates above the bottom layer, the average concentration of particles in which is equal to around 100 kg/m³; the height of this zone reaches 1.0–1.5 m from the air distribution grate.

(iii) A transport zone locates above the zone of splashes; the average density of particles in this zone varies in the range 1–20 kg/m³ and depends on the primary air velocity.

During operation on biomass at the nominal load (8 MW) and at 80% of the nominal load, the temperature at the furnace outlet is 20–30°C higher than that in the bottom layer. This means that, although fuel is supplied on the bottom layer surface, it burns not only in the bottom layer (in which semicoke combustion predominantly takes place), but also in the zone of splashes, in which the majority of volatiles burn out, but part of the heat releasing during this process is transferred downward into the bottom layer with the particles returning into it. Depending on the size of fuel particles and agitation conditions, part of fuel can also burn in the transport zone. The material returning into the furnace from the cyclone has a temperature lower than the temperature at the furnace outlet, because part of heat is transferred through the cyclone refractory insulation to water-cooled tubes, and another part of heat is spent for heating the fluidizing
Wood chips with the determining size (thickness) $\delta = 8–10$ mm were used as biofuel. They had the following elemental composition (in dry state, the content of moisture in working state W_r, %):

\[
W_r = 37.2; \quad C_c = 51.1; \quad H_c = 6.3; \\
S_c = 0.03; \quad O_c = 41.4; \quad A_c = 0.8.
\]

The wood chip combustion reaction rate constant found at laboratory conditions at a temperature of particles $T_p \geq 1073$ K is described by the formula $k = 288\exp(-8540/T_p)$ m$^{-1}$ and at $T_p < 1073$ K by the formula $k = 1.9\exp(-2650/T_p)$ m$^{-1}$.

HEAT BALANCE OF THE FURNACE UNDER STEADY-STATE CONDITIONS

The wood chip combustion process can be subdivided into three consecutive stages: drying, release and combustion of volatiles, and afterburning of coke residue. Since fuel particles have approximately the same sizes exceeding the terminal sizes at the given gas velocity in the bottom layer, it can be considered that the chips are dried and the volatiles release from them in the bottom layer or at least on its surface. The volatiles burn out predominantly in the splash zone, in which they are mixed with the oxygen of air admitted through the bottom layer in the form of bubbles and also with the oxygen of air admitted with secondary blasting. Part of the heat releasing during the combustion of volatiles β is transferred from the splash zone into the bottom layer with the particles falling into it. The value of β was found from the heat balances of the furnace and bottom layer in the course of processing experimental data (Fig. 2).

The following flows of heat enter into the furnace under steady-state conditions:

(i) the heat releasing during the combustion of fuel;
(ii) the heat of primary and secondary air with the temperature $t_{a} \approx 70^\circ C$;
(iii) the heat of recirculation gases having the temperature $t_{r} \approx 70^\circ C$; and
(iv) the heat of air used for fluidization of particles in the lock and heated to the temperature t_l of the material returning into the furnace.

The heat releasing in the furnace is spent for increasing the temperature of combustion products to the temperature t_{tr}, transferred to the heat-absorbing surfaces, and spent for heating the recirculating material. The specific heat appearing in the equations is understood to mean the average specific heat either in the range from zero to the specified temperature or in the temperature range from t_{l} to t_{tr}. The heat balance equation looks as follows:

\[
BQ_f^c + (G_1 + G_2)c_g f_g + G_3 c_g f_3 + G_4 c_g f_4 \\
= F_{tr} wc_g f_{tr} + kF_{1.1}(t_{tr} - t) + G_{in} c_{in}(t_{tr} - t_l), \quad (1)
\]

where B is the fuel flowrate, kg/s; Q_f^c is the fuel lower heating value in the working state, MJ/kg; G_1, G_2, G_3, and G_4 are the flowrates of primary air, secondary air, air supplied to the fluidized lock, and recirculation gases, m3/s; G_{in} is the flowrate of circulating material, kg/s; c_g and c_u are the per unit volume heat capacities.
of gas and air, kJ/(m³ K); \(c_w \) is the per unit mass heat capacity of the bed inert particles, kJ/(kg K); \(k \) is the heat-transfer coefficient in the furnace, W/(m² K); \(w \) is the velocity of gases in the furnace recalculated for the standard temperature and pressure, m/s; and \(F_{h.t.} \) is the heat-transfer surface area in the furnace, m².

The heat balance of the bottom layer is composed of the heat entering from coke residue combustion, the heat of a part of volatiles, and the heat of primary air, air from the lock, and recirculation gases. The entering heat is spent to evaporate moisture from the fuel and to heat the combustion products and recirculating particles:

\[
B \frac{C_c}{100} Q_c + Q_l + \beta B \frac{V_f}{100} + G \rho c_f \delta + G \rho c_{f.l}
\]

\[
+ G \rho c_{f.a} = B \frac{V_f}{100} + c_w w_{f.b} F_{f.b} + G_m c_m (t_{f.b} - t_l),
\]

(2)

where \(\beta \) is the yield of volatiles in the working state, %; \(\alpha \) is the content of carbon in semicoke, %; \(\gamma \) is the heat of vaporization, kJ/kg; and \(t_{f.b} \) is the bed temperature.

The second term in the left-hand side of the equation describes the heat releasing as a result of semicoke combustion in the lock. The coefficient of heat transfer to the heat-transfer surfaces in the furnace \(k_{h.t.} \), W/(m² K) was calculated from the empirical formula

\[k_{h.t.} = 85 (\bar{\rho})^{0.3} \]

obtained from the results of experiments on studying heat transfer in the furnaces of large CFB boilers (also in the boiler shown in Fig. 1) [8, 9] as a function of the average density \(\bar{\rho} \), kg/m³ of suspension in the transport zone, in which the heat absorption surfaces (waterwalls) are placed. In turn, the suspension density depends on the external circulation intensity of bed material in accordance with the following formula [7–10]:

\[
\bar{\rho} = \frac{G_m}{F_{u_r} (H_{t.u} - H_{f.b})} \frac{K_u (u - u_{t.u})}{\exp[K_u (H_{t.u} - H_{f.b})] - 1},
\]

(3)

where \(F_{u_r} \) is the cross-section area of the furnace upper part, m²; \(H_{f.b} \) is the furnace and bottom layer height, m; \(K_u = 0.23/(u - u_{t.u}) \) is the empirical coefficient describing the carry-over of material from the splash zone, l/m; \(u \) is the gas velocity at the furnace outlet, m/s; and \(u_{t.u} \) is the terminal velocity of a free particle, m/s.

For boiler operation under steady-state conditions at different loads and with the parameters indicated above, Eqs. (1)–(3) give expressions for the material recirculation intensity \(G_m = 0.03 \rho_{f.b} \) as a function of the fluidization velocity \(u_{f.b} \) in the bottom layer, as well as the fraction of heat absorbed by the bottom layer during the combustion of volatiles \(\beta = 0.311 \ln (u_{f.b} / \alpha) - 0.132 \) [11], where \(\alpha \) is the primary air excess factor.

As a semicoke particle burns out, its volume decreases by several hundred times before its size decreases to approximately 1 mm, which corresponds to its free hovering at the given gas velocity. Thus, we can assume that wood semicoke burns out mainly in the bottom layer and in the splash zone. Hence, it becomes possible to simplify the model and to assume that fuel particles do not burn in the transport zone, which is confirmed by the fact that the semicoke concentration remains constant along the furnace height.

An unexpected result was obtained from assessments aimed at determining the possibility of coke to burn in a fluidized-bed lock. Namely, with the particle circulation velocity related to the furnace transport zone cross section equal to around 10 kg/(m² s), carbon content equal to 0.3%, and air flowrate through the lock equal to 0.15 m³/s, the corresponding flow air excess factor is much less than unity (0.3 at the nominal load). The actual air excess factor calculated from the composition of combustion products depends on the amount of semicoke that actually burns out in the lock. Its value is determined by the bed height, temperature, specific surface area, and reaction capacity of semicoke particles. In the considered case, the temperature in the fluidized-bed lock (750°C) was sufficient for semicoke particles to burn in it. The size these particles had at the furnace outlet \(\delta_c \) found from screening was equal to 0.6 mm. With the measured concentration of semicoke particles \(z_c \), their specific surface area in the lock can be calculated from the formula

\[S_1 = 6 \rho_{f.b} (1 - \varepsilon) z_c / (\rho, \delta_c). \]

Knowing the semicoke reaction capacity and using the information presented above, we can easily calculate the carbon dioxide concentration \(C_{CO_2} \) in the gas leaving the lock (its flowrate is equal to \(G_l \)) and, hence, the amount of semicoke that burns out in the lock

\[m_l = G_l \rho_{f.b} \frac{12 C_{CO_2}}{44} \]

Taking the heating value \(Q = 32.6 \) MJ/kg, we can calculate the amount of heat releasing in the lock during the combustion of semicoke particles in it:

\[Q_l = Q m_l. \]

DIFFERENTIAL EQUATIONS

OF A TRANSIENT

For describing transients in a CFB boiler, we should write heat and mass balance equations. To do so, we take the following assumptions.

(i) The changes of gas concentrations caused by a change in the concentrations \(z_{f.b} \) of combustibles in the bottom layer volume \(V_{f.b} \) take place almost instantaneously as compared with the rate of change in the bed temperature, due to which the concentrations of gas-
eous components at each moment of time can be calculated from the equations of steady combustion mode (a quasi steady-state approach).

(ii) Owing to intense agitation of particles in the bottom layer, the combustibles are uniformly distributed in its volume, and this layer is isothermal in nature.

(iii) The volatiles burn out in the bottom layer and in the splash zone at a rate incommensurably faster than the rate at which they release from fuel particles. The fraction β of the volatiles combustion heat received by the bottom layer is presented in Fig. 2.

(iv) The combustion process in the furnace continues until the formation of CO$_2$, because in none of the studied modes was any noticeable amount of CO observed at the furnace outlet.

(v) The formation of CO during the combustion in the fluidized lock at low temperature is not taken into account, although at such temperature CO and not CO$_2$ is the primary product of the reaction C + O$_2$, which, as experiments show, burns out in the bed itself.

(vi) Owing to intense internal recirculation, the temperature t_s in the transport zone is constant along the furnace height, but it differs from the bottom bed temperature t_{fb}.

(vii) Experiments have shown that the time of transients connected with the change of the ratio between the mass of inert material in the bottom layer and its mass in the furnace above the bottom layer is small as compared with the time of temperature variation; therefore, this ratio of the masses of inert material was calculated from expressions obtained for steady-state modes (a quasi steady-state approach).

The unsteady equations for material balances of semicoke and fuel particles having a considerable content of volatiles can be written as follows:

$$\frac{dM_{fb}}{dt} \frac{dz_{fb}}{\tau} = \frac{B}{L} \frac{C_1}{100} \left(V_{fb} \right) \frac{\rho_{in} \left(1 - \varepsilon \right)}{\rho \delta_{fb}} \cdot z_{fb},$$

where M_{fb} and M are the masses of particles in the bottom layer and in the lock, kg; τ is time, s; and f and j are the flowrates of carbon from bottom layer unit surface and volatiles, kg/(cm m2).

The last term in Eq. (4) reflects the external circulation of semicoke particles that are carried away from the bottom layer with the flowrate G_m and finally return into the furnace from the lock with fluidized bed, in which their concentration is equal to z_f. The concentration $f_{fb}z_{fb}$ of semicoke in the flow G_m of material carried away from the bottom layer differs from the concentration z_{fb} in the layer itself, because large particles are not carried away from it. Taking the average size of semicoke particles in the bottom layer (found from screening) equal to $\delta = 3$ mm and using a linear approximation of the particle diameter corresponding to the particle terminal velocity $[9]$, we can obtain an expression for relative concentration of particles carried away from the bed in the following form:

$$f_{fb} = 1 - 0.53(0.41 + 0.13u)^{-0.27}.$$ \hspace{1cm} (7)

The mass of inert material in the bottom layer M_{fb} can be calculated as the difference between the total mass in the furnace M, which is determined with sufficient accuracy by the pressure difference and mass in the transport zone M_{tr}:

$$M_{fb} = M - M_{tr},$$ \hspace{1cm} (8)

where $M_{fb} = H_{fb} F_{fb} \overline{\rho}$. The average density $\overline{\rho}$ is calculated from (3).

The flow of carbon from unit surface of a semicoke particle reacting in the bottom layer is given by

$$j = 0.375 \left(\frac{1}{k} + \frac{1}{\alpha_{fb}} \right)^{-1} C_{O_2},$$ \hspace{1cm} (9)

where the diffusion mass transfer coefficient of the reacting semicoke particle $\alpha_{fb} = Sh D/\delta = 0.375$ is a stoichiometric coefficient, kg C/kg O$_2$; Sh is the Sherwood number; and C_{O_2} is the mass concentration of oxygen. The coefficient of oxygen diffusion in nitrogen is given by the following formula $[12]$:

$$D = 0.16 \times 10^{-4} \left(\frac{t_{fb}}{273} \right)^{1.9}.$$ \hspace{1cm} (10)

The Sherwood number is calculated from the following expression $[13]$:

$$Sh = \frac{\delta}{\delta_{in}} \left[2.78 Re_k^{0.33} \left(\frac{\delta_{in}}{\delta} \right)^{0.67} \right]^{1.56} \left[1 - \left(\frac{\delta_{in}}{\delta} \right)^{0.67} \right] Sc^{0.33},$$ \hspace{1cm} (11)

where Sc is the Schmidt number, and $Re_k = Ar / \left[1400 + 5.22 \sqrt{Ar} \right]$ (Ar is the Archimedean number) is the Reynolds number for the onset of fluidization $[14]$.

The average active concentration of oxygen in the bottom layer is calculated in accordance with the following formula $[15]$:

$$C_{O_2} = \frac{\alpha_{fb} z_{fb}}{\alpha_{fb} S_{fb} H_{fb}} \left[1 - \exp \left(\frac{\alpha_{fb} S_{fb} H_{fb}}{u_0} \right) \right],$$ \hspace{1cm} (12)

where $S_{fb} = \frac{6 \rho_{in} \left(1 - \varepsilon \right) z_{fb}}{\rho \delta}$ is the specific surface of reacting semicoke in the bottom layer, which depends on the mass concentration z_{fb} of semicoke; u_0 is the...
concentration of oxygen in the air admitted to under
the bed, kg/m³; and \(\alpha_r = \frac{1}{k} \left(\frac{1}{k} + \frac{1}{\alpha_d} \right) \) is the reaction
gas transfer coefficient.

Equation (5) describes the change in the mass of
particles in the lock, and Eq. (6) describes the change
in the mass of particles in the bottom layer containing
volatiles. Equation (6) can be excluded from the sys-
tem of equations without any noticeable loss of accu-
ry, because the time taken for the volatiles to release
and burn out is around 1 min, and the time of transient
is 10–20 min. In the general case, the flow of volatiles
\(j_v \) releasing from unit surface of fuel particles is calcu-
lated in accordance with [16] from the following
expression:

\[
j_v = \frac{V^r \rho_x}{100 \tau_v}, \tag{13}
\]

where \(\rho_x \) is the density of fuel particles, kg/m³, and \(\tau_v \)
is the time taken for volatiles to release from the wood,
which was determined experimentally [11].

The equations for unsteady modes of heat balances
describe variations of temperature in the bottom layer,
at the furnace outlet, and in the lock with fluidized
bed:

\[
\begin{align*}
M_{tfb} c_{in} \frac{dt_{fb}}{d\tau} & = V_{fb} \frac{6 \rho_{in} (1 - \varepsilon)}{\rho_c \delta} j_{c,fb} Q_c \\
& + \beta V_{fb} \frac{6 \rho_{in} (1 - \varepsilon)}{\rho_c \delta} j_v \delta \tilde{Q}_c, \\
& + G_{r} c_d + G_{c,fb} t_{fb} - \frac{B W^r}{100} - \frac{w_0 c_f F_{fb,fb}}{\rho_c \delta} \frac{c_{fb}}{}\frac{F_{fb}}{F_{h,t}} \\
& - G_{in} c_{in} (t_{fb} - t_i) + \frac{G_{c,fb} t_{fb}}{c_v},
\end{align*}
\]

\[
T_{fb} = \frac{M_{fb} c_{in}}{G_{c,fb} + G_{in} c_{in} - G_{in} c_{in} \frac{G_{in} c_{in}}{G_{in} c_{in} + k_{h,t} F_{h,t} G_{in} c_{in} + k_{l} F_{l}}}; \tag{17}
\]

—heating of material above the bottom layer

\[
T_{fb} = \frac{V_{fb} (\rho_{c,fb} + c_{fb})}{k_{h,t} F_{h,t} + G_{c,fb} + G_{in} c_{in}} - \frac{k_{l} F_{l}}{G_{in} c_{in} + k_{l} F_{l}}; \tag{18}
\]

—cooling of material in the lock

\[
T_{f} = \frac{M_{f} c_{in}}{k_{h,t} F_{h,t} + G_{in} c_{in}} - \frac{k_{l} F_{l}}{k_{l} F_{l} + G_{c,fb} + G_{in} c_{in} + k_{l} F_{l}}; \tag{19}
\]

—semicoke combustion time constant, which is in
fact the combustion time of its particle

\[
V_{tr} (c_{g} + c_{in} \delta) \frac{dt_{tr}}{d\tau} = (1 - \beta) B Q, \quad \frac{V^r}{100} + G_{r} c_{d} f_{a}
\]

\[
+ w_0 c_f F_{fb,fb} - \frac{w_0 c_f F_{fb,fb}}{\rho_c \delta} \frac{c_{fb}}{F_{h,t}}
\]

\[
- G_{in} c_{in} (t_{fb} - t_i) - k_{h,t} F_{h,t} (t_{fb} - t_i);
\]

\[
M_{in} c_{in} \frac{dt_{in}}{d\tau} = G_{in} c_{in} (t_{fb} - t_i) \tag{16}
\]

\[
+ G_{c,fb} t_{fb} - k_{l} F_{l} (t_{fb} - t_i) + Q_l,
\]

\[
W^r \text{ is the moisture content in fuel in its working
\text{state, %; } w_0 \text{ is the initial velocity, m/s; } t \text{ is the coolant
\text{temperature (water heated in the boiler), °C; } F_{fb,fb}\text{ is the
\text{cross-section area of the furnace lower part, m}^2; } F_{h,t}\text{ is the
\text{heat-transfer surface area in the furnace, m}^2; } F_{l}\text{ is the
\text{heat-transfer surface area in the intermediate}
\text{chamber, m}^2; } k_{l}\text{ is the heat-transfer coefficient in the
\text{lock, W/(m}^2 \text{K); } Q_c \text{ and } Q_v \text{ are the lower heating values
of semicoke and volatiles, MJ/kg; } z_v \text{ is the mass frac-
\text{tion of combustibles in the bed containing volatiles; } \delta_0
\text{ is the initial size of fuel particles, m; } V_{fb}\text{ is the volume
of the transport zone, m}^3; \text{ and } \rho_{in} \text{ is the density of inert
particles, kg/m}^3.

CALCULATION OF TIME CONSTANTS

In the automatic control theory, the variation rate
of parameters during transients is characterized by
time constants, which appear as coefficients of deriva-
tives in the differential equations of control elements
written in standard form and having the dimension of
time. These constants are determined by calculation
or experimentally by taking transient responses [17].

An analysis of formulas (4)–(16) yields expressions
for the time constant main components that take into
account the following:

—heating of material in the bottom layer

\[
T_{fb} = \frac{M_{fb} c_{in}}{G_{c,fb} + G_{in} c_{in} - G_{in} c_{in} \frac{G_{in} c_{in}}{G_{in} c_{in} + k_{h,t} F_{h,t} G_{in} c_{in} + k_{l} F_{l}}}; \tag{17}
\]

—heating of material above the bottom layer

\[
T_{fb} = \frac{V_{fb} (\rho_{c,fb} + c_{fb})}{k_{h,t} F_{h,t} + G_{c,fb} + G_{in} c_{in}} - \frac{k_{l} F_{l}}{G_{in} c_{in} + k_{l} F_{l}}; \tag{18}
\]

—cooling of material in the lock

\[
T_{f} = \frac{M_{f} c_{in}}{k_{h,t} F_{h,t} + G_{in} c_{in}} - \frac{k_{l} F_{l}}{k_{l} F_{l} + G_{c,fb} + G_{in} c_{in} + k_{l} F_{l}}; \tag{19}
\]

—semicoke combustion time constant, which is in
fact the combustion time of its particle

\[
V_{tr} (c_{g} + c_{in} \delta) \frac{dt_{tr}}{d\tau} = (1 - \beta) B Q, \quad \frac{V^r}{100} + G_{r} c_{d} f_{a}
\]

\[
+ w_0 c_f F_{fb,fb} - \frac{w_0 c_f F_{fb,fb}}{\rho_c \delta} \frac{c_{fb}}{F_{h,t}}
\]

\[
- G_{in} c_{in} (t_{fb} - t_i) - k_{h,t} F_{h,t} (t_{fb} - t_i);
\]

\[
M_{in} c_{in} \frac{dt_{in}}{d\tau} = G_{in} c_{in} (t_{fb} - t_i) \tag{16}
\]

\[
+ G_{c,fb} t_{fb} - k_{l} F_{l} (t_{fb} - t_i) + Q_l,
\]

where \(W^r \) is the moisture content in fuel in its working
state, %; \(w_0 \) is the initial velocity, m/s; \(t \) is the coolant
temperature (water heated in the boiler), °C; \(F_{fb,fb}\) is the
cross-section area of the furnace lower part, m²; \(F_{h,t}\) is the
heat-transfer surface area in the furnace, m²; \(F_{l}\) is the
heat-transfer surface area in the intermediate
chamber, m²; \(k_{l}\) is the heat-transfer coefficient in the
lock, W/(m² K); \(Q_c \) and \(Q_v \) are the lower heating values
of semicoke and volatiles, MJ/kg; \(z_v \) is the mass frac-
tion of combustibles in the bed containing volatiles; \(\delta_0
\) is the initial size of fuel particles, m; \(V_{fb}\) is the volume
of the transport zone, m³; and \(\rho_{in} \) is the density of inert
particles, kg/m³.

The time constant of the resulting transient is equal
to the sum of components. However, the influence of
two latter ones is sometimes not obvious, because the
semicoke and volatile combustion flows depend both
Limiting values of the time constant components

<table>
<thead>
<tr>
<th>Boiler zone</th>
<th>$G_{in} = 0$</th>
<th>$G_{in} \to \infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom layer</td>
<td>$\tau_{Bottom}^{G_{in}} = \frac{M_{f.b}^{in}}{c_a^{in} G_{in}}$</td>
<td>$\tau_{Bottom}^{G_{in}} = \frac{M_{f.b}^{in}}{c_a^{in} G_{in} + k_p F_{p}}$</td>
</tr>
<tr>
<td>Transport zone</td>
<td>$\tau_{Transport}^{G_{in}} = \frac{V_{tr} (\rho c_{in}^{\infty} + c_a^{\infty})}{G_{c}^{in} c_a^{\infty} + k_p F_{p}}$</td>
<td>$\tau_{Transport}^{G_{in}} = \frac{V_{tr} (\rho c_{in}^{\infty} + c_a^{\infty})}{G_{c}^{in} c_a^{\infty} + k_p F_{p} + k_c F_{c}}$</td>
</tr>
<tr>
<td>Lock</td>
<td>Does not have a physical sense</td>
<td>$\tau_{Lock}^{G_{in}} = \frac{M_{c}^{in}}{G_{c}^{in} c_a^{\infty} + k_p F_{p} + k_c F_{c}}$</td>
</tr>
</tbody>
</table>

on the temperature and on the change of oxygen concentration during the transient. The table gives the limiting values of the time constant components obtained from expressions (17)–(19) at $G_{in} = 0$ (a stationary fluidized bed) and at $G_{in} \to \infty$ (a CFB with very intense external circulation of particles).

It can be seen from an analysis of expressions (17)–(19) that the time constants depend directly on the circulation rate: they decrease as G_{in} increases (which is determined by the primary air velocity). Moreover, the inert particle flow density (i.e., the mass of inert particles in the transport zone) depends on the value of G_{in} in the freeboard, which in turn determines the heat transfer in the furnace. Hence, the primary air velocity is one of the key parameters causing the CFB boiler inertia properties.

COMPARISON BETWEEN THE RESULTS OF CALCULATIONS AND EXPERIMENTS IN A CFB BOILER

Figure 3 shows variations of the bottom layer temperature, temperature at the furnace outlet, and in the lock in response to disturbances applied in the furnace during its operation at the nominal load by reducing the fuel feed at constant air flowrate, by changing primary air flowrate at constant secondary air and fuel flowrates, by increasing primary and decreasing secondary air flowrate while keeping constant total air and fuel flowrates, and by decreasing the total air flowrate while keeping constant fuel flowrate and the ratio of primary to secondary air flowrates. A decrease of fuel flowrate (see Fig. 3) causes a gradual drop of temperature in the bottom layer and at the furnace outlet.

The time required for reaching the new steady-state operating conditions in the transport zone is significantly shorter than that in the bottom layer because the major part of heat releases in the splash zone during the combustion of volatiles in it. Part of the heat released during the combustion of fuel is transferred by gas and particles into the transport zone, and another part of this heat is transferred into the bottom layer. The bottom layer is heated more slowly because the mass of inert material in it is larger than it is in the transport zone. The regularities pertinent to variation of temperature in the lock with fluidized bed are more intricate in nature. After a decrease of fuel flowrate, the temperature in the lock first becomes somewhat lower due to a drop of the circulating material temperature at the furnace outlet, after which the temperature in it increases because the fuel flowrate remains almost constant, whereas the heat release increases due to an increase of semicoke content in the bottom layer and, hence, in the circulating material that enters into the lock.

An increase of fuel flowrate at a constant air flowrate exceeding the amount theoretically necessary for complete combustion of fuel leads, naturally, to a growth of temperature in the entire furnace volume. A decrease of primary air flowrate at a constant secondary air flowrate affects the change of temperature in the same way as a decrease of fuel flowrate, because in this case we have a smaller amount of combustion products to be heated.

Figure 4 shows the dependences of time constant on the velocity at the furnace outlet calculated from
Eqs. (17)–(21) and (17)–(19) without taking into account the components represented by Eqs. (20) and (21). As the gas velocity is increased from 3 m/s (which corresponds to boiler operation at 60% of its nominal load) to 6.5 m/s (operation at the nominal boiler load), the system inertia drops by almost a factor of 2.

Figure 4 also shows the time constants calculated experimentally from the temperature variation rate. Almost all experimental points lie between the two calculated curves, from which it follows that the model can be used for analyzing real processes.

Figure 5 shows variations of the bottom layer temperature and the temperature at the furnace outlet in response to changing the fuel flowrate from 0.7 to 0.8 kg/s in comparison with the transient calculated from the obtained values of time constants. We see that the upper curve (variation of temperature in the freeboard) can be approximated by a first-order inertial section and T_{tr} is numerically equal to the plant time constant. The medium curve represents a complex plant with an S-shaped curve that is replaced by a first-order model with the time constant T_{fb} and plant delay time τ_{pd} and τ_{td}, where τ_{pd} is the pure (transport) delay time and τ_{td} is the transient delay time.

The calculated dependences are in satisfactory agreement with the experimental data.

REFERENCES
8. A. P. Baskakov, B. Leckner, and K. Breitkholts, “Complex heat transfer in CFB furnaces,” in *Proceedings of

12. V. I. Babii and Yu. F. Kuvaev, Combustion of Pulverized Coal and Calculation of a Pulverized-Coal Flame (Energoatomizdat, Moscow, 1986) [in Russian].

17. E. P. Stefani, Principles of Calculating the Tuning Parameters of Devices for Control of Thermal Power Processes (Energiya, Moscow, 1972) [in Russian].

Translated by V. Filatov