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We study the problem of the time�optimal control
of a small mass point without environmental resis�
tance. The control function in the problem is a magni�
tude�bounded force. The time required for transfer�
ring the point from one given state to another is used
as a control criterion. It is shown that the optimal time
and the optimal control have complicated asymptotic
expansions even in the situation of general position.

1. In the study of various aspects of optimal control
problems [1–3] for systems with fast and slow vari�
ables [4–8, 11] of the form

(1)

an important role is played by the following condition.
Condition I. All the eigenvalues of the matrix A4

have negative real parts.
However, there are problems with a meaningful

mechanical interpretation in which Condition I is not
satisfied. An example is the following time�optimal
control problem in the class of piecewise continuous
controls:

(2)

It can be interpreted as follows. Given a point particle
of small mass ε > 0 moving in a plane under the influ�
ence of a bounded control force u(t) lying in this plane,
the goal is the minimum�time transfer of the particle
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n
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m
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x· y, x y, �
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, u t( ) 1,≤∈=

x 0( ) x0 0, y 0( )≠ y0, 0 ε � 1,<= =

x Tε( ) 0, y Tε( ) 0, Tε min.→= =

from the given state defined by the position (x0) and
the velocity (y0) to the origin, where it stops.

Here and below, ||·|| is the Euclidean norm and
〈·, ·〉 is the inner product in the considered finite�
dimensional spaces.

The basic difference of this problem from previ�
ously considered ones is that A4 = 0. As a result, there
is no reduced system and, hence, it is unclear how the
reduced problem for (2) looks like (and whether it
exists at all).

Note that time�optimal control problems for com�
pletely controllable systems of more general form

can be reduced to problem (2) by changing variables.

The following result is straightforward.

Proposition 1. For all sufficiently small ε problem (2)
is solvable, and T

ε
 → 0 as ε → 0.

As will be shown later, T
ε
 = O( ) as ε → 0, and

the characteristic scaled time in problem (2) is 

rather than , which occurs in problems satisfying

Condition I.

The goal of this study is to construct complete
asymptotic expansions in powers of the small parame�
ter ε for the optimal time and the optimal control in
problem (2). To this end, we use the methods devel�
oped in [9, 10].

It should be stressed that, even in the situation of
general position, the asymptotic expansions of these
quantities have a complicated character similar to that
of the asymptotics obtained in [9, 10].
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2. In problem (2) we pass to the new time τ := 

and denote x( ), ( ), u( ), and  by

X(τ), Y(τ), U(τ), and θ
ε
, respectively. Then problem (2)

becomes

(3)

By Proposition 1, new problem (3) is solvable at all
sufficiently small ε. Moreover, it is well known [1] that
problem (3) is also solvable at ε = 0. Note that, for
ε = 0, the optimal control is discontinuous.

Theorem 1. Problem (3) is solvable at all small ε ≥ 0
and

3. By Pontryagin’s maximum principle [1, 3],
which is a necessary and sufficient optimality condi�
tion in the case under consideration, the optimal con�
trol in problem (3) is given by

(4)

and this representation is unique up to the normaliza�
tion of the vector (l1, ε, l2, ε).

For problem (3) with ε = 0, these vectors with the
normalization condition ||l1, 0|| = 1 have the form l2, 0 =

λ0l1, 0, where λ0 = , and l1, 0 = – .

By virtue of the Cauchy formula, a control of
form (4) is optimal for problem (3) if and only if

(5)

In what follows, we assume that the initial vectors
in problem (2) are not parallel:

(6)

Condition (6) corresponds to the situation of gen�
eral position (i.e., it remains valid under small varia�
tions in x0 and y0)

A solution of Eq. (5) is sought in the form

(7)

where all the quantities introduced are small.
Evaluating the integral in (5) and taking into

account (7), we obtain the system of equations

t
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ε
�����

X ' Y, X Y, �
2
,∈=

Y ' U, U �
2
, U τ( ) 1,≤∈=

X 0( ) x0, Y 0( ) εy0, 0 ε � 1,<= =

X θε( ) 0, Y θε( ) 0, θε min.→= =
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dτ
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0

θ
ε

∫=

x0 || y0.

l1 ε, l1 0, r, l1 ε,+ 1,= =

l2 ε, λ0 ν+( )l1 ε, l̃ 2 ε, , l̃ 2 ε, l1 ε, ,⊥+=

β l̃ 2 ε, , θε θ0 ϑ,+= =

(8)

where

If r, ν, β, and ϑ are all sufficiently small, then the
functions F0, F1, and F2 can be represented as

(9)

where �i, 3(ϑ, ν, β) are converging power series begin�
ning with the third power of their arguments with
known coefficients.

Solving the first approximation system for (8) in
view of expansions (9) yields

Moreover,  satisfies the equation

x0– l1 ε,

1
2
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2
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2
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θ0

β1
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(6)
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Thus, β1 = || || satisfies the equation 2β1  =

||v0||. From this, denoting the inverse of the func�

tion δ  by W0(·), we obtain, for small δ,

Next, asymptotic expansions for all the indicated
quantities are derived following the standard tech�
nique (see [9, 10]). They are similar in form to the
expansions obtained in [9, 10]. Thus, the following
result holds.

Theorem 2. Under condition (6), the optimal time T
ε

and the components of vectors l1, ε and l2, ε can be expanded

in asymptotic series of the form ε, W(ε), ,

where Rk(·) are rational functions of their arguments and

Rk ε, W(ε),  = O(εk/2).

More specifically,

where P is a given constant.
Thus, by virtue of formula (4), the asymptotic rep�

resentation of the optimal control in problem (3) (and,
hence, in problem (2)) has an irregular form up to

O(ε). For example, for  � , the optimal

control has the asymptotic representation

as ε → 0. Here, l1, 1 =  and a v1 = .
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Translated by I. Ruzanova
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