The influence of HfO₂ additives on the optical properties of Nd³⁺-doped Y₂O₃ ceramics

V. V. Osipov¹, A. N. Orlov¹, R. N. Maksimov*,¹,², V. V. Lisenkov¹,², and V. V. Platonov¹

¹ Institute of Electrophysics UB RAS, Amundsen st. 106, 620016 Ekaterinburg, Russia
² Ural Federal University named after First President of Russia B. N. Yeltsin, Mira st. 19, 620002 Ekaterinburg, Russia

Received 21 December 2012, revised 7 February 2013, accepted 20 March 2013
Published online 29 April 2013

Keywords nanopowder, transparent ceramics, transmission, luminescence, lifetime

Transparent yttria ceramics were fabricated by sintering a mixture of 1 at.% Nd:Y₂O₃ and HfO₂ nanopowders produced by laser synthesis method. The best transmittance was 80.96% at the wavelength of λ=1080 nm in 6 mol.% HfO₂ doped sample (1.5 mm thick). The additives of hafnium broaden both pumping and luminescence bands of Nd³⁺ ion in yttria ceramics. The luminescence intensity of 4F₃/2 → 4I₁₁/₂ transition was little affected by hafnium concentration. The effective lifetime of 4F₃/2 level in Nd:Y₂O₃ ceramics enhanced by 30% at 10 mol.% HfO₂ doping concentration and the decay kinetics of laser transition attains Förster's behavior.

1 Introduction Doping of yttria ceramics with HfO₂ additives leads to disordering of crystal structure and changing of optical properties of material [1,2]. For instance, pore-free yttria ceramics were obtained at the concentration of HfO₂ 2.6 mol.%. The absorption spectral width of such ceramics was close to that of a Nd:Y₂O₃ single crystal and emission bandwidth was higher than of Nd:YAG (3.4 and 0.7 nm, respectively).

It is known [3,4] that disordering of ceramics crystal structure leads to broadening of spectral band of laser transition that is suitable for ultra-short pulse laser generation. Earlier it was shown that the greatest broadening is reached at doping of ceramics by heterovalent ions. Unfortunately, our efforts to receive the laser oscillation in highly transparent ZrO₂-doped Nd:Y₂O₃ ceramics with disordered crystal structure were not successful [5,6]. It was caused by reducing of lifetime and luminescence intensity (up to 2 times) of upper laser level and by broadening of spectral band of laser transition that also reduces the gain coefficient.

The purpose of this paper is to report on fabrication process and optical characteristics such as transmission and luminescence spectra, effective lifetime, quantum efficiency and quenching kinetics of 4F₃/2 → 4I₁₁/₂ transition in Nd:Y₂O₃ ceramics doped by HfO₂ additives.

2 Experimental The 1 at.% Nd:Y₂O₃ and HfO₂ nanopowders were produced using laser synthesis method [7] which involves evaporation of solid target by pulse-periodical CO₂-laser and eventual condensation of vapor in air flow. The laser targets of Nd:Y₂O₃ and HfO₂ were prepared from coarse commercial powders with purity of >99.99% and initial particle sizes of 1-20 µm by pressing at 10 MPa and pre-sintering at 1300 °C for 5 h. After presintering the laser targets were 60 mm in diameter and 19 mm in thickness.

The main laser parameters at the synthesis were as follows: average power P=550 W, peak power Pₚ=8-9 kW, half-height duration τₚ=330 µs, pulse repetition rate f=500 Hz, output rate 28 and 21 g/hour for Nd:Y₂O₃ and HfO₂ nanopowders, respectively.

At the laser synthesis of Y₂O₃-based nanopowders the particles are produced in metastable monoclinic phase (XRD on D/Max-2200V/PC diffractometer, Fig. 1a). The transformation of monoclinic phase in a main cubic is accompanied by substantial growth of elementary cell volume. Therefore, in order to avoid destruction of ceramic sample during sintering this phase transformation was performed in advance by annealing of Nd:Y₂O₃ nanopowder at 1000 °C for 30 min. XRD analysis of annealed nanopowder on D8 Discover diffractometer has shown that
the content of the cubic phase at these annealing conditions is equal to 100% (Fig. 1b). According to the BET analysis the specific surface area of the Nd:Y$_2$O$_3$ particles after annealing was 17.92 m2/g, i.e. the size of particles increased from 12 to 69 nm.

Then HfO$_2$ and annealed Nd:Y$_2$O$_3$ nanopowders were mixed in demanded composition in a plastic bottle with ethanol and YSZ balls for 48 h. The dried mixture was uniaxially pressed into Ø15 mm pellets at 133 MPa. The pellets then were sintered at 1900 °C for 20 h in a high temperature vacuum furnace GERO HTK-8W/22-1G-HV under 3·10$^{-5}$ mbar vacuum during holding. The sintered samples were annealed in air at 1400 °C for 2 h to eliminate the oxygen vacancies.

The transmission spectra of polished ceramic samples with the thickness of ~1.5 mm were recorded using dual-beam spectrophotometer Shimadzu UV-1700. The emission spectra and lifetime of 4F$_{3/2}$ level were measured using ATC-type laser light-emitting diode with power of 3 W at a wavelength of λ_p=808±3 nm in combination with the recording device consisting of the FD-24K photodiode and the Tektronix TDS 520 oscilloscope. All measurements were carried out at room temperature.

3 Results and discussion

3.1 Optical properties

The photo of synthesized samples after polishing is shown in Fig. 2. It can be seen that undoped and 1 mol.% HfO$_2$ doped samples are opaque at these sintering conditions but transparency grows with increase of HfO$_2$ concentration.

Figure 2 The photo of synthesized samples.

Figure 3 shows transmission spectra of samples doped with different concentration of HfO$_2$. The sample with 6 mol.% HfO$_2$ has a higher transmittance – 80.96% at the wavelength of λ=1080 nm. Transmittance of 10 mol.% doped sample is less than 6 mol.% probably due to the formation of excessive secondary phase near grain boundaries.

Figure 3 Transmission spectra of HfO$_2$ doped samples.

Figure 4 shows the transmission spectra of samples at the pumping wavelengths λ=803-808 nm. To demonstrate the broadening of pumping band with increase of HfO$_2$ concentration we used transparent Nd:Y$_2$O$_3$ ceramic sample without hafnium prepared in optimal sintering conditions.

Figure 4 Transmission spectra of samples at the pumping wavelengths.
The effective lifetimes of $^4F_{3/2}$ level were determined from the oscilloscope patterns of luminescence decaying (inset of Fig. 5 shows oscillogram of HfO$_2$-undoped sample). Figure 5 shows the effective lifetime of the $^4F_{3/2}$ level in Nd:Y$_2$O$_3$ ceramics as a function of HfO$_2$ concentration. The effective lifetimes of 0, 1, 3, 6 and 10 mol.% HfO$_2$ doped samples were 190, 210, 220, 240 and 255 µs, respectively. So the higher hafnium concentration enhanced the effective lifetime by 30%.

![Figure 5](image)

Figure 5 Effective lifetime of $^4F_{3/2}$ level in Nd:Y$_2$O$_3$ ceramics versus HfO$_2$ concentration. Inset shows the experimental oscillogram of luminescence in HfO$_2$-undoped sample.

It is interesting to note that the measured effective lifetime in prepared ceramics without HfO$_2$ (190 µs) is less than reported lifetime in similar single-crystal (255 µs) [8] and ceramics (220 µs) [9]. It is probably connected with the presence in our ceramics some kind of intrinsic defects such as bonded radicals $\overset{\ddagger}{O}=\overset{\ddagger}{Y}=O$, Nd$^{3+}$ ions located in distorted positions of crystal lattice, surface defects and dislocations.

According to the emission spectra (Fig. 6), doping with HfO$_2$ leads to a broadening of spectral bands in the $\lambda=1040$–1090 nm region due to Stark-splitting of $^4F_{3/2}$ and $^4I_{11/2}$ levels. In this wavelengths range two lines overlap and form a wider band with total width of 37 nm at 20% level of maximum luminescence intensity.

![Figure 6](image)

Figure 6 Emission spectra of undoped and 6 mol.% HfO$_2$ doped Nd:Y$_2$O$_3$ ceramics.

The relative quantum efficiency of HfO$_2$ doped samples regarding Nd:Y$_2$O$_3$ sample was measured by cutting of luminescence radiation under the same angle and registration using photodiode and oscilloscope. According to received data the luminescence intensity of HfO$_2$ doped ceramics decreases by 5-10%.

3.2 Processing of radiative decay curves

Received $^4F_{3/2}$ emission decay curves were approximated by Eq. (1),

$$I(t) = I_0 \exp \left(\frac{t}{\tau_r} - \sqrt{\frac{t}{\tau_f}} \right),$$

where τ_r and τ_f are the characteristic times of radiative decay and Förster's quenching, respectively [10]. Approximation was performed using properly Mathcad function. The results of processing are given in Table 1.

<table>
<thead>
<tr>
<th>Concentration of HfO$_2$, mol.%</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>6</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_r, µs</td>
<td>311</td>
<td>500</td>
<td>650</td>
<td>550</td>
<td>715</td>
</tr>
<tr>
<td>τ_f, µs</td>
<td>978</td>
<td>277</td>
<td>203</td>
<td>329</td>
<td>179</td>
</tr>
</tbody>
</table>

![Figure 7](image)

Figure 7 Luminescence kinetics in Nd:Y$_2$O$_3$ (a) and Nd:Y$_2$O$_3$-HfO$_2$ (b) samples.
Without HfO₂ the emission decay behavior is almost radiative or close to exp(-t/τᵣ) and Förster's part is negligible (Fig. 7a). It can be seen that deviation of initial signal from radiative curve at τᵣ=210 μs is insignificant.

The value of τᵣ=210 μs most close approaches to experimental curve and to the value given in Fig. 5 (190 μs). The decay behavior becomes Förster's, i.e.

\[
\text{exp}\left(\frac{t}{\tau_f}\right),
\]

(Fig. 7b) when the concentration of HfO₂ is 1 mol.%. In this case the difference between experimental and closest radiative curve (at τᵣ=255 μs) is more considerable. The further increasing of hafnium concentration does not qualitatively affect behavior although Förster's part becomes larger i.e. τᵣ decreases and τₚ grows with increase of concentration (Table 1). Exception of this tendency is 6 mol.% doped sample but the reasons of given fact while not clear.

These results suggest the presence of some defects which are acceptors for ⁴F₃/₂ level of Nd³⁺ ion in Y₂O₃ ceramics. Further research is in progress to clarify the kind of acceptors.

4 Conclusions Transparent ceramics of 1 at.% Nd:Y₂O₃ doped with different concentration of HfO₂ were fabricated from nanopowders produced by laser method. The higher transmittance was 80.96% at λ=1080 nm in 6 mol.% HfO₂ doped Nd:Y₂O₃ sample. Additives of HfO₂ broaden the emission bandwidths of Nd³⁺ (⁴F₃/₂→⁴I₇/₂) transition up to 37 nm at 20% level of maximum luminescence intensity. The effective lifetime of ⁴F₃/₂ level grows up to 30% when concentration of HfO₂ is 10 mol.%. The luminescence intensity of ⁴F₃/₂→⁴I₇/₂ transition was little affected by hafnium concentration.

Acknowledgements The work was supported by the projects No. 12-11-2-1011, 12-2-1018, 12-2-002-ЯЦ of the Urals Branch of the Russian Academy of Sciences and project No. 1-08-00005-a of Russian Foundation for Basic Research.

References