Applied Mathematical Sciences, Vol. 7, 2013, no. 47, 2347 - 2352
HIKARI Ltd, www.m-hikari.com

The Minimum k-Cover Problem
Anna Gorbenko

Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
gorbenko.ann@gmail.com

Vladimir Popov

Department of Intelligent Systems and Robotics
Ural Federal University
620083 Ekaterinburg, Russia
Vladimir.Popov@Qusu.ru

Copyright © 2013 Anna Gorbenko and Vladimir Popov. This is an open access article
distributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Abstract

We consider the problem of determining the minimum cardinality
collection of substrings, each of given length k > 2, that “cover” a given
string x of length n. We describe an approach to solve this problem.
This approach is based on constructing an explicit reduction from the
problem to the satisfiability problem.
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Different problems of finding regularities are thoroughly studied in theoret-
ical computer science (see e.g. [1] — [6]). In particular, the minimum k-cover
problem was introduced in [7].

Given a nonempty string x of length n, a set V. = {v,vq,...,0,} of p
substrings of z. We say that V is a cover for x if and only if every position of
x lies within an occurrence of some v;, 1 < ¢ < p. In addition, if each string
in V' has length k, then V is a k-cover of x. If p is the minimum integer for
which such a set V' exists, then V is said to be a minimum k-cover of x.
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THE MINIMUM k-COVER PROBLEM (MCP):

INSTANCE: An alphabet X, a string X over %, positive integers k and p.

QUESTION: Whether there exists a k-cover of X of cardinality p?

The minimum k-cover problem is NP-complete (see [8]). Encoding prob-
lems as Boolean satisfiability and solving them with very efficient satisfiability
algorithms has recently caused considerable interest (see e.g. [9] — [25]). In
this paper, we consider an explicit reduction from MCP to the satisfiability
problem. For simplicity, we use S[i] to denote the ith letter in sequence S, and
Sli, 7] to denote the substring of S consisting of the ith letter through the jth
letter. Let 3 = {a1,as,...,apy}. Let

()0[17 27.7] = v1§l§|2\x[i7j7 l])

©[2,1, 7] = Map<mii<izi<snze (el 7, 1) v —xfi, 5, 12]]),
oli, il = ¢[1,4, 3] A »[2,14, 4],

¥li] = Vigj<ix|—r+19li; J],
Y = N<i<p¥[i],

pli] = Vi<j<phi<i<ihi=1, if i<k hi=i—k+1, it i=kY[J, 1],

p = MNi<i<x|plil,
T[4 = Mgj<imi X li=anizi 2 [0 ],
T[2] = Ai<i<ix| x[i]=a; 2[4, 7],

T = T[Q] A /\lgig\XW—[la Z],

E=@NANYVAPpATAD.

Theorem. Given a fixed alphabet 3, a string X over X, positive integers
k and p. There is a k-cover of X of cardinality p if and only if £ is satisfiable.

Proof. Suppose that there is V' = {vy,vs,...,v,} that is a k-cover of X
of cardinality p. Let x[i,j,{] = 1 where 1 < i < p, 1 < j <k, v[j] = a;
x[i,j, 1] = 0 where 1 <@ <p, 1 <j <k, vl[j] # a; y[i,j] = 1if and only if
X[j,j+k—1=v, wherel <i<p 1<j<|X|-k+1;z[i,j] =1 where
1 <i<|X|,1<7<|E], X[i] = aj; 2[i,j] = 0where 1 <i < [X],1 <5< [X],
X[Z] 7é CLj.

Since V' C ¥*, for all i and j there is [ such that z[i,j,{] = 1. Therefore,
o[l,i,7] = 1. In view of z[i,j,l] = 0 where 1 <i < p, 1 <j <k, v[j] # a,
it is clear that there is no more than one value of [ such that x[i, j,l] = 1.
Hence either z[i, j,1[1]] = 0 or z[i,7,1[2]] for all ¢, j, {[1] # [[2]. Therefore,
©[2,1,7] = 1. So, p = 1.
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Note that V' is a set of substrings of X. Since y[i,j] = 1 if and only if
X[j,j +k — 1] = v;, it is easy to see that ¢[i] = 1. By definition, ¢[2,i] = 1.
So, ¥ = 1.

Since V' is a k-cover of X, X[r,r 4+ k — 1] = v; for some r and j such that
1<j<p,r<i<r+k—1. Therefore, p[i] = 1. So, p = 1. Since z[i,j] = 1
where 1 < i < |X|, 1 < j < |¥|, X[i] = aj; 2[i,j] = 0 where 1 < i < |X]|,
1 <j <|¥|, X[i] # aj, it is easy to check that 7 = 1. Since V is a k-cover of
X, it is clear that n = 1. Therefore, £ = 1.

Suppose now that £ = 1. Hence E =p =9 =p=7=n=1. Since ¢ = 1,
by definition, [1,1, 7] = 1, ¢[2,,7] = 1. Tt is easy to check that for all ¢ and
Jj there is only one value of [ such that x[i, j,[] = 1. Let v;[j] = ;. Since n =1
and 7 = 1, it is clear that if y[i, j] = 1, then X[j,j +k — 1] = v;. In view of
p =1, we obtain that V' is a k-cover of X. 0

In view of the theorem, we obtain an explicit reduction from MCP to
PSAT.

Note that « — < —aV (3, a = f < (maV () A (aV —3). Therefore,
n =< 1" where

(—yli, g] V 2[5 + ¢, 1V ~xfi, 1 +¢,1]).

Let & = oA Ap AT AN, Ttis clear that £ < &', Since £’ is a CNF, we obtain
an explicit reduction from MCP to SAT.

Using standard transformations (see e.g. [26]) we can obtain an explicit
transformation &’ into &’ such that £ < £ and £” is a 3-CNF. It is easy to
see that & gives us an explicit reduction from MCP to 3SAT.

There is a well known site on which posted solvers for SAT [27]. They
are divided into two main classes: stochastic local search algorithms and algo-
rithms improved exhaustive search. All solvers allow the conventional format
for recording DIMACS boolean function in conjunctive normal form and solve
the corresponding problem [28]. In addition to the solvers the site also repre-
sented a large set of test problems in the format of DIMACS. This set includes
a randomly generated problems of 3SAT.

We create a generator of natural instances for LCS. Also we use test prob-
lems from [27]. We use algorithms from [27]. Also we design our own genetic
algorithm for SAT which based on algorithms from [27].

We use heterogeneous cluster based on three clusters (Cluster USU, Linux,
8 calculation nodes, Intel Pentium IV 2.40GHz processors; umt, Linux, 256
calculation nodes, Xeon 3.00GHz processors; um64, Linux, 124 calculation
nodes, AMD Opteron 2.6GHz bi-processors) [29].

Each test was run on a cluster of at least 100 nodes. The maximum solution
time was 6 hours. The average time to find a solution was 11.4 minutes. The
best time was 7 seconds.
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