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1. INTRODUCTION

Ferrofluids (magnetic fluids) represent colloidal
suspensions of monodomain ferro� or ferrimagnetic
particles in a carrying medium. The rich set of unique
physical properties of these systems determines their
wide use in advanced technologies and draws consid�
erable attention in both basic and practical research.
Modern ferrofluids consist of particles with character�
istic dimensions about 10–20 nm. In order to prevent
the coagulation of particles under the action of central
dispersive forces, particles are covered with special
surface layers consisting of surfactant molecules or
having an ionic nature. These layers produce complete
or partial screening of the dispersive forces.

Numerous experiments have shown that particles
in ferrofluids are capable of forming various heteroge�
neous structures such as linear chains, closed rings,
Y�like forks, and dense droplets [1–6]. These struc�
tures have a typical size of several microns, and they
can be readily observed with common optical micro�
scopes. Since the average particle size in ferrofluids is
much smaller than the wavelength of visible light, sep�
arate particles, chains, and other clusters with linear
structures cannot be revealed by optical techniques.
However, these structures have been recently observed
in electron microscopes [6, 7]. At the same time, lin�
ear chains, closed rings, Y�forks, and certain other
branched structures have been obtained in numerous
computer simulations (see, e.g., [8–12]).

The first models of droplet aggregates [13–16]
treated their formation as a gas–liquid phase transi�
tion in a system of separate dipole particles, while the
presence of chains and other clusters was ignored.
However, at present, the appearance of linear chains at
the pretransition stage in a macroscopically homoge�
neous ferrofluid consisting of well�screened particles

is a reliably established fact. Recently, we proposed a
model of the phase condensation of particles in a fer�
rofluid with allowance for the appearance of chains
[17] and considered two limiting cases in which an
external magnetic field is either absent or infinitely
strong. Theoretical analysis [17] has confirmed that,
as the energy of magnetic interaction between parti�
cles increases (or the temperature decreases), linear
chains initially form and then exhibit condensation
into dense volume phases. It should also be noted that,
in the case of strong magnetic fields, dense phases of
ferromagnetic particles representing ensembles of
chains have been observed in both laboratory experi�
ments [6] and computer simulations [10, 11].

However, in the absence of an external magnetic
field, both experiments [6, 18, 19] and computer sim�
ulations [19–22] have shown that, when linear chains
appear, an increase in the energy of magnetic interac�
tion between particles and their concentration leads to
the formation of branched structures and networks.
The self�organization of dipole interacting particles
into dense homogeneous globules without the prelim�
inary formation of chains has also been observed in
computer simulations [23], but this result was
obtained for the so�called Stockmayer fluid, which
consists of particles interacting like magnetic dipoles
with a central Lennard�Jones component. The simu�
lation [23] was performed for the case where the cen�
tral attraction energy was about half of the energy of
magnetic interaction between particles.

Thus, the results of recent experiments and simula�
tions indicate that, in the absence of an external mag�
netic field, the condensation of ferromagnetic parti�
cles well screened from the central interaction follows
a specific scenario with the initial formation of linear
chains and their subsequent self�organization into
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branched aggregates and network structures. Note that
the ability of purely magnetic interactions between
particles to induce their phase condensation of the
gas–homogeneous fluid type in the absence of an
external field is still under discussion and opposite
viewpoints have been formulated (see, e.g. [20–22]).

It must be recognized that the basic features of the
condensation of particles in ferrofluids, despite the long
history of research in this field, have not been estab�
lished so far. Investigations in this direction are impor�
tant not only from the standpoint of the general theory
of phase transitions, but also in view of the numerous
practical applications of magnetic fluids and related
compositions. For example, in recent years, a number
of magnetic polymer compositions (ferrogels and fer�
roelastomers) consisting of magnetic particles embed�
ded in polymeric matrices have been synthesized for
various applications. The dispersion of particles takes
place while the matrix occurs in a liquid state prior to
polymerization. In this state, the composition repre�
sents a usual ferrofluid. The structures formed by mag�
netic particles in the matrix are fixed upon polymeriza�
tion. The macroscopic properties and behavior of a
polymerized composition depend on the type of struc�
tures formed by particles in the matrix [18].

Another field of research that investigates the struc�
ture of magnetic fluids is the biomedical technologies
based on these systems [24]. In particular, the effi�
ciency of magnetic hyperthermia procedures for the
treatment of tumors significantly depends on the type
of structures formed by magnetic nanoparticles in bio�
logical tissues.

The first model of a ferrofluid with particles com�
bined in linear chains and Y�forks, which had been
proposed by Tlusty and Safran [25], predicted a first�
order gas–fluid phase transition, where the fluid rep�
resented a dense phase consisting of Y�forks. However,
the distribution of particles between chains and forks
was not considered, although these statistics play an
important role in the formation of internal structures
and their mutual transformations in ferrofluids [17],
thus determining the macroscopic properties of these
systems [26]. It should be noted that no conclusion on
the first�order phase transition from a gas of chains to
the fluid of branched structures [25] has been con�
firmed in numerical simulations [20, 22].

Thus, no statistical models of ferrofluids with allow�
ance for the formation of branched and network struc�
tures have been formulated until now. Below we propose
a simple statistical model that takes into account the
possible appearance of linear chains, Y�forks, and
related network structures and consider the behavior of
this system in the absence of an external magnetic field.
It is assumed that the central dispersive forces are com�
pletely screened by surface layers present on the parti�
cles, so that only the magnetic dipole interactions
between particles are taken into account.

The results of our theoretical investigation show
that, if the concentration of particles and their mag�

netic interaction energy are sufficiently low, most par�
ticles form separate linear chains. If these parameters
exceed certain critical values, particles predominantly
form branched network structures. The passage from
chains to network has a continuous character rather
than a discontinuous first�order phase transition. An
analogous conclusion on the continuous passage from
chains to networks was made earlier [20, 22] based on
the results of Monte Carlo simulations.

2. MAIN ASSUMPTIONS
AND STATISTICAL MODEL

Consider a system of identical magnetic spheres
possessing constant magnetic dipole moments m. The
main assumption of the proposed model is the ability
of particles to form linear chains, Y�like forks, and
networks consisting of a large number of particles. It
should be noted that 2D layers of ferromagnetic parti�
cles frequently contain closed ring�shaped aggregates
(see, e.g., [6]). However, these rings were not found in
3D model computer simulations of ferrofluids. More�
over, analysis of the dependence of the initial magne�
tization of ferrofluids on the concentration of particles
allows one to conclude that rings are absent in real 3D
samples. Although the existence of rings in 3D ferrof�
luids is still under discussion in the literature, prelimi�
nary estimates show that the appearance of rings in the
3D case leads to considerable losses of system entropy,
which makes the formation of rings unlikely. In 2D
systems, where these losses are relatively small [27],
the formation of rings is quite possible. For the sim�
plest analysis, the presence of rings in the system under
consideration is ignored.

Examples of possible structures are depicted in
Fig. 1. In the framework of one model, it is impossible
to stipulate all topological types of networks. Here, we
will consider a network consisting of linked Y�forks,
which is apparently the topologically simplest case.
This network comprises three�particle nodes con�
nected by linear segments (chains). It is assumed that
the network represents an infinite structure that con�
tains no triangles, loops, and other closed paths.

Fig. 1. Structures formed by particles in the ferrofluid
model under consideration. Shaded particles form
branching sites (nodes) in Y�forks and networks.
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Let  be the number of n�particle chains per unit

volume of the ferrofluid,  is the number of Y�forks
with i�, j�, and k�particle arms per unit volume, and

 is the number of nodes connected by i�, j�, and
k�particle segments per unit volume. In order to elim�
inate ambiguity, particles constituting the nodes are
not included in segments—that is, not accounted for
by the i, j, and k values.

In linear segments (chains), we will take into
account only the magnetic interaction between near�
est neighbors. This is the usual approximation in the
theory of chain aggregates for systems of dipolar parti�
cles, and the related error in the free energy of a chain
does not exceed ~20% [25]. Finally, we will ignore any
interactions between chains, Y�forks, nodes, and seg�
ments of the network. This is also a quite well justified
approximation for systems with not large concentra�
tions of particles. The influence of interactions
between chains on their characteristic dimensions was
studied earlier [17] under the assumption that other
aggregates and structures in a ferrofluid are absent.

Under the assumptions formulated above, the free
energy per unit volume of the ferrofluid can be
expressed as follows:

(1)

Here, Fc, FY, and FN are the free energies per unit
volume for chains, Y�forks, and the network, respec�
tively; kBT is the absolute temperature expressed in
energy units; εc is the average dimensionless (normal�
ized to kBT) energy of magnetic interaction between
nearest neighbors in linear chains (segments of
branched structures); εT is the average dimensionless
energy of interaction between three particles in the
nodes; V is the hydrodynamic volume of a particle
(including the surface screening layers). The values of
dimensionless energies εc, T will be estimated in what
follows. The terms with logarithms in formulas (1)
correspond to the entropy of the ideal gas of chains,
Y�forks, and network nodes, respectively. The adopted
order of summation over i, j, and k eliminates multiple
counting of identical configurations for forks and the
network [27]. In the last term of Eq. (1), the factor 1/3
takes into account the fact that the number of linear
segments in the model network equals the number of
three�particle nodes.
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The distribution functions gc, gY, and gN in Eq. (1),
which correspond to a thermodynamically equilib�
rium state of the ferrofluid, must ensure the minimum
of free energy with allowance for the condition of par�
ticle balance in the system:

(2)

where ϕ is the total volume concentration (number
density) of particles in the system and ϕc, ϕY, and ϕN

are the volume fractions of particles entering in
chains, Y�forks, and the network.

By minimizing the free energy (1) with allowance for
condition (2) and accomplishing standard transforma�
tions, we obtain the following distribution functions:

(3)

where X is the Lagrange multiplier. In order to deter�
mine the latter quantity, expressions (3) have to be
substituted into conditions (2). The first relation (3)
readily yields

(4)

Denoting the total number of particles in a fork by n =
i + j + k + 3, we obtain the following expression for the
volume fraction of forks:
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Substituting expressions (4)–(6) into condition (2),
we obtain an equation with respect to X, which can be
readily solved by numerical methods.

3. DISTRIBUTION OF PARTICLES
OVER AGGREGATES

In order to determine the Lagrange multiplier X, it
is necessary to evaluate dimensionless energies εc and
εT. To a first approximation, this can be done by ignor�
ing fluctuations in the arrangement and orientation of
particles in linear segments and three�particle nodes,
i.e., by considering the ground states of these clusters.
The dimensionless energies of the ground states of lin�
ear segments and nodes were determined earlier [27]
and, in the adopted notations, can be expressed as fol�
lows:

(7)

where μ0 is the magnetic permeability of a vacuum, d
is the hydrodynamic diameter of a particle (with
allowance for the surface screening layer), and sub�
script “0” indicates the ground state of a cluster. By
substituting expressions (7) into formulas (4)–(6) and
then into the expression for ϕc in Eq. (2), one can
determine X. Finally, formulas (4)–(6) yield expres�
sions for ϕc, ϕY, and ϕN.

Figure 2 presents some results of calculations of the
relative concentrations of aggregates defined as

 = /ϕ. Estimates show that, for typical
magnetite�based ferrofluids with particles covered by
approximately 2�nm�thick surfactant layers, the value

of  = 5 corresponds to a magnetic core diameter of
about 15–16 nm. Particles with these dimensions are
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d3kBT
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T 15
8
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c
,= = = =

f c Y N, , ϕc Y N, ,

ε0
c

present in many modern ferrofluids. The results pre�
sented for this case in Fig. 2 show that, at small total
volume concentrations ϕ of particles, most of them
form linear chains. As ϕ increases, the fraction of par�
ticles entering into the network increases. When ϕ
exceeds a certain critical value (corresponding to the
intersection of curves 1 and 2, the number of particles
in the network becomes greater than that in separate
chains. The number of particles occurring in forks is
significantly smaller than their numbers in chains and
the network.

The threshold value of concentration ϕ corre�
sponding to the model ferrofluid (Fig. 1) is very small,
on the order of several hundredths of a percent. In
modern ferrofluids, the “magnetic” volume concen�
tration of particles (i.e., that determined with allow�
ance for only their magnetic cores, ignoring surface
layers) frequently reaches 7–10% (see, e.g., [26]).
Taking this into account, one might expect that, in the
absence of an external magnetic field, all particles with
magnetic core diameters of about 15 nm or more must
be combined in network aggregates. However, this
hypothesis has not been confirmed by experiments.

In order to obtain more adequate quantitative esti�
mates of the concentration of particles in aggregates, it
is necessary to take into account the fluctuations of
particles in linear and triangular clusters. Allowance
for these fluctuations leads to renormalization of the εc

and εT values. Analysis shows that the results of this
modification depend on the system dimensionality
and are somewhat different for 2D layers and 3D vol�
ume samples. In the case of 2D layers, corrections to
the energies of particle interactions in chains and
three�particle nodes had been estimated earlier [27].
Calculations of the corrections to εT in 3D ferrofluids
are very cumbersome and worthy of publication by
themselves. Here, in order to obtain physically signif�
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icant fundamental results, we will use estimates of the
εc and εT values for 2D layers [27].

In the adopted notations, these are as follows:

(8)

Figure 3 shows the results of calculations of the relative

concentrations  obtained using estimations (8).
Qualitatively, the dependence of the relative concen�
trations f on the total volume concentration ϕ of parti�
cles in the ferrofluid is generally the same as in Fig. 2.
However, the threshold value of ϕ for the transition
from chains to network in Fig. 3 is about 8%, which
seems more reasonable than the value obtained in the
fluctuation�free approximation (7). In order of mag�
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nitude, the corrected value of the threshold concen�
tration agrees with the results of computer simulations
[20, 21], where the formation of networks was
observed at concentrations on the order of several per�
cent.

Note that the difference between the threshold
concentrations according to Figs. 2 and 3 amounts to
two orders of magnitude. Therefore, allowance for the
fluctuations of particles in clusters is necessary for
obtaining adequate results.

Figure 4 shows the results of calculations analogous
to those presented in Fig. 3, but performed for a some�

what greater energy  of interaction between particles
in the chain. A comparison of Figs. 3 and 4 shows that
the threshold concentration is very sensitive to this
energy (i.e., to the size of interacting particles) and

rapidly decreases with increasing .
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Simple analysis shows that the dimensionless
chemical potentials of particles in the ferrofluid can be
expressed as

(9)

Figure 5 shows the results of calculating the depen�
dence of χ on the particle concentration ϕ. The mono�
tonic growth in χ(ϕ) in the entire interval, including
the region of intersection of curves 1 and 2 in Fig. 4,
shows that the passage from separate chains to a net�
work is not a discontinuous first�order phase transi�
tion. An analogous conclusion that the onset of net�
work formation is not a first�order phase transition was
made [20, 22] based on the results of Monte Carlo
simulations.

Our previous analysis [17] of the gas–liquid phase
transition in a ferrofluid consisting of separate chains
(without branched structures) showed that this transi�

tion could be expected for  > 5.6–5.8 and ϕ > 11–
12%. Therefore,

we can also be expect that the network formation in
the system of magnetic particles takes place at lower

 and ϕ values than those necessary for the gas–liq�
uid transition. This conclusion agrees with observa�
tions of network structures in experiments [6, 18, 19]
and numerical simulations [19, 20, 22].

It should be noted that the formation of networks
and other heterostructures in ferrofluids can lead to
radical changes in the dynamic properties of these sys�
tems. In particular, these changes can be responsible
for the fact that features of the magnetization reversal
kinetics characteristic of spin glasses have been
observed in ferrofluids [28]. The effect of internal
structures on the dynamic properties of ferrofluids is
worthy of special investigation.

4. CONCLUSIONS

We have theoretically studied a thermodynamically
equilibrium state of the ferrofluid consisting of identi�
cal spherical monodomain particles in the absence of
an external magnetic field. Based on the results of
well�known laboratory experiments and computer
simulations it was suggested that the magnetic parti�
cles can form linear chains, Y�forks, and connected
network structures. It was assumed that the particles
only interact as magnetic dipoles, while the central
dispersive forces are completely screened by surface
layers.

Our analysis showed that, if the volume concentra�
tion of particles and their magnetic interaction energy
are small, most particles form separate linear chains. If
these parameters exceed certain critical values, most
particles concentrate so as to form branched network
structures. The relative number of particles entering in
Y�forks is small compared to the numbers of particles
in the chains and network. In contrast to the model
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c
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[25], which ignored the statistical character of the dis�
tribution of particles over linear chains and segments
of branched structures, the proposed model analysis
showed that the passage from a state with most parti�
cles being predominantly combined in chains to the
state with a predominant network structure has a con�
tinuous character rather than a discontinuous first�
order phase transition. This conclusion is confirmed
by the results of numerical simulations [20, 22].

A comparison of our results to those obtained using
a model [17] of the phase condensation in a ferrofluid
consisting of chains leads to the conclusion that for�
mation of the network is preceded, at least, by the con�
densation of particles in a homogeneous liquidlike
phase. This agrees with the results of laboratory exper�
iments and numerical simulations [6, 18–20, 22], in
which network clusters of magnetic particles have
been observed.

We have considered the topologically simplest
structure with three�particle nodes connecting three
linear segments, free of triangles and any other closed
loops. Evidently, allowance for the appearance of
many�particle nodes, loops, and other topological
features would increase the probability of the forma�
tion of network clusters. Therefore, taking these fea�
tures into account would not change the main conclu�
sion of this study that network appear prior to the
phase condensation of particles into a homogeneous
dense liquidlike phase.

The proposed model ignores the interaction
between particles belonging to different clusters. For
this reason, the model analysis cannot describe the
evolution of the network structure with an increasing
number of particles and their interaction energy. In
principle, there are two possible scenarios for this evo�
lution. First, an increase in the interaction energy and
particle concentration can lead to an increase in the
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Fig. 5. Dimensionless chemical χ potential of particles as
function of their total volume concentration ϕ, calculated
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network density, the appearance of nodes shared by
more than three linear segments, and an increase in
the number of these nodes, while the characteristic
network structure is retained. Second, the network can
exhibit a collapse and transform into a homogeneous
dense phase at certain values of the interaction energy
and particle concentration. The former scenario was
considered in [20, 22] and the latter was discussed in
[21]. An analysis of the problem of network structure
evolution and allowance for a more general network
topology are subjects for separate investigations.
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