Journal of Mathematical Sciences, Vol 192, No 3, July, 2013

STRAIGHT-LINE PROGRAMS: A PRACTICAL TEST (EXTENDED ABSTRACT)
I. S. Burmistrov,” A. V. Kozlova,* E. B. Kurpilyansky,” and A. A. Khvorost* UDC 519 256

We present two algorithms that construct a context free grammar for a given text The first one is an improvement of
Rytter’s algorithm that constructs grammars using AVL trees The second one follows a new approach and constructs
grammars using Cartesian trees Also we compare both algorithms and Rytter’s algorithm on various data sets and
provide a comparative analysis of the compression ratio achieved by these algorithms and by the LZ77 and LZW
algorithms Bibliography: 15 titles

1 INTRODUCTION

Nowadays, search algorithms on huge data sets attract much attention Since compressed representations are
convenient for storing and handling huge data sets, one of the possible ways to process huge volumes of data is
to work directly with compressed representations

Obviously, algorithms that process compressed representations depend on the compression mechanism There
are various compressed representations: collage systems [4], string representations using antidictionaries [11],
straight line programs (SLPs) [9], run length encoding [1], etc Text compression based on context free grammars
such as SLPs has become a popular research direction by the following reasons The first reason is that grammars
provide a well structured compressed representation suitable for data searching The second one is that the SLP
based compression is polynomially equivalent to the compression achieved by the Lempel Ziv algorithm, which
is widely used in practice This means that, given a text S, there is a polynomial relation between the size of
an SLP that derives S and the size of the dictionary stored by the Lempel Ziv algorithm, see [9] It should
also be noted that the classical LZ78 [15] and LZW [13] algorithms can be regarded as special cases of grammar
compression (At the same time, other compression algorithms from the Lempel Ziv family, such as LZ77 [14]
and the run length encoding, do not fit directly into the grammar compression model)

There is a wide class of string problems that can be solved in terms of SLPs This means that the execution time
of such an algorithm depends polynomially on the size of the SLP For example, the class contains the following
problems: Pattern matching [6], Longest common substring [7], Counting all palindromes [7], some
versions of the problem Longest common subsequence [12] At the same time, constants hidden in the big O
notation for algorithms on SLPs are often very large Also, the aforementioned polynomial relation between the
size of an SLP for a given text and the size of the LZ77 dictionary for the same text does not yet guarantee
that SLPs provide a good compression ratio in practice Thus a major question is whether or not there exist
SLP based compression models suitable for practical applications This question splits into two subquestions
addressed in the present paper: How difficult is it to compress data to an SLP representation? How large a
compression ratio do SLPs provide as compared to classical algorithms used in practice?

Let us describe in more detail the content of the paper and its structure Section 2 gathers some preliminaries
about strings and SLPs In Sec 3, we present two SLP construction algorithms The first one is an improved
version of Rytter’s algorithm [9] The second one is a new algorithm that constructs SLP using Cartesian trees
In Sec 4, we compare the efficiency of SLP construction algorithms and also present the results of comparing
the compression ratio for all SLP based algorithms and some classical compression algorithms In Sec 5, we
summarize our results

A part of the results of the present paper related to the improved version of Rytter’s algorithm was presented
at the 1st International Conference on Data Compression, Communication, and Processing held in Palinuro,
Italy, in 2011 (http://ccp2011.dia.unisa.it/CCP 2011/Home.html) and was announced in [2]

2 PRELIMINARIES

We consider strings of characters from a fixed finite alphabet ¥ The length of a string S is the number of its
characters, and it is denoted by |S| The concatenation of strings S; and Ss is denoted by Sy -S> A position in a
string S is a point between consecutive characters We number the positions from left to right by 1,2, | |S|—1

*Institute for Mathematics and Computer Sciences, Ural State University, FEkaterinburg, Russia, e mail:
burmistrov ivan@gmail com, voronl3e02@gmail com, DembelZ@yandex ru, jaamal@mail ru

Translated from Zapiski Nauchnykh Seminarov POMI, Vol 402, 2012, pp 45 68 Original article submitted May 17,
2012
282 1072 3374/13/1923 0282 (©)2013 Springer Science+Business Media New York

It is convenient to consider also the position 0 preceding the text and the position |S]| following it For a string
S and an integer ¢ with 0 < i < |S|, we define S[i] as the character between the positions i and i + 1 of S For
example, S[0] is the first character of S The substring of S starting at a position ¢ and ending at a position r,
0<{¢<r<|S| is denoted by S[¢ r] (in other words, S[¢ r]=S[¢]-S[¢(+1]- -S[r—1))

A straight line program (SLP) S is a sequence of assignments of the form

Sy =expri, S; =expra, ,S, =expry,
where S; are rules and expr; are expressions of the following form:

e expr; is a character of ¥ (we call such rules terminal), or
o expr; =S¢+ S, (¢,r < i) (we call such rules nonterminal)

Thus an SLP is a context free grammar in Chomsky normal form Obviously, every SLP generates exactly
one string over ¥ This string is referred to as the text generated by the SLP For a grammar S generating a
text S, we define the parse tree of S as the derivation tree of S in S We identify terminal symbols with their
parents in this tree; after this identification, every internal node has exactly two children

Figure 1 presents the parse tree of the SLP

F0—>b, Fl—%l, F2—>F1 . FO, F3—>F2 . Fl, F4—>F3 . FQ, F5—>F4 . F3, F6—>F5 . F4,

which derives the 6th Fibonacci word abaababaabaab

Fig 1 An SLP that derives abaababaabaab

In this example, the SLP derives a text of length 13 and contains 7 rules In the general case, the nth Fibonacci

word can be derived from the following SLP with n + 1 rules:

F0—>b, IE‘1—>a, F2—>F1'F0, F3—>F2'F1, ,}Fn—>Fn,1'}Fn,2
Recall that the length of the nth Fibonacci word is equal to the (n 4+ 1)th Fibonacci number, i e, the nearest
integer to ‘On? where ¢ = 1+2\/5 (the golden ratio) Thus for some texts, their compressed representation using
SLPs may be exponentially smaller than the initial text

In the paper, we adopt the following conventions: every SLP is denoted by a capital blackboard bold letter,
for example, S Every rule of this SLP (and every internal node in its parse tree) is denoted by the same letter
with subscripts, for example, S1,S,, The size of an SLP S is the number of its rules, and it is denoted by
|S| The height of a node in a binary tree is defined as follows The height of a terminal node (leaf) is equal to 0
by definition The height of a nonterminal node is equal to 1 + the maximum of the heights of its children We
denote the height of a rule S; by A(S;)

A concatenation of SLPs S and S’ is an SLP that derives S - S’, and it is denoted by S-S’ We would like
to emphasize that concatenation of SLPs is not a rigidly defined operation (like concatenation of strings), since
there are various ways to construct an SLP that derives S-S’ from the SLPs S and S’ So a particular way of
concatenating SLPs depends on the context of the problem under consideration

283

3 SLP CONSTRUCTION ALGORITHMS

3.1. SLPs, factorizations, and trees. The SLP construction problem can be stated as follows:

PROBLEM: SLP construction
INPUT: a text S
OutpPUT: an SLP S that derives S

The problem of constructing a minimum size grammar generating a given text is known to be NP hard
[3] Hence we should look for polynomial time approximation algorithms One of the key approaches to such
algorithms is to construct a factorization of a given text and to build some binary search tree using it If we
fix some factorization, then at each step an SLP construction algorithm can construct an SLP that derives a
particular factor Next the algorithm concatenates the SLP built at the previous steps with the SLP that derives
the particular factor It is obvious that such an algorithm depends on both the size of the text and the size of
the factorization Hence the SLP construction problem can be reformulated in the following way

PrOBLEM: SLP construction using factorization
INPUT: a text S and its LZ factorization Fy, Fs, , Fj
OUuTPUT: an SLP S that derives S

Rytter in [9] uses a natural factorization generated by the LZ77 compression algorithm as the main factoriza
tion This choice ensures a polynomial relation between the size of an SLP deriving the text S and the size of
the LZ77 dictionary for S Using the properties of the LZ factorization, we get the following relation: the SLP
constructed for a particular factor is contained in the SLP built at the previous steps This relation substantially
increases the efficiency of the construction

Definition 3.1. The LZ factorization of a text S is the decomposition S = Fy - F, - - F}, where Fy = S[0] and
F; is the longest prefiz of S[|Fv- -Fi—1| |S|] that occurs as a substring in Fy - -F;_y, or S[|F1- - F;_1]]
if this prefiz is empty The number k is called the size of the factorization

There is only one condition on the structure of the parse tree of an SLP: it is a maximal binary tree This
means that every internal node of an SLP has exactly two children (the term is taken from coding theory: it
is clear that a binary prefix code is maximal by inclusion if and only if its binary tree is maximal in the above
sense) There exist several types of binary trees Which type is more suitable for the SLP construction problem?
The algorithm proposed in [9] uses balanced trees, namely, AVL trees

Definition 3.2. An AVL tree is a binary tree such that for every nonterminal node, the heights of its children
differ at most by 1

There is a bound on the height of an AVL tree logarithmic in the number of its nodes, see [5] It is the main
reason why this type of trees is used in Rytter’s algorithm At the same time, the algorithm is nontrivial and
resource intensive As an alternative, in Sec 3 4 we consider an algorithm that constructs SLPs using Cartesian
trees

Definition 3.3. A binary search tree is a binary tree in which every node is assigned a number called a key
such that the following properties are satisfied:

o the left subtree of a node X contains only nodes with keys less than the key of X;
e the right subtree of a node X contains only nodes with keys greater than the key of X;
o both left and right subtrees are also binary search trees

A heap is a binary tree in which each node is assigned a number called a priority and for every node its
priority is greater than the priorities of its children

A Cartesian tree is a binary tree in which each node is assigned a pair of numbers: a key and a priority Thus
a Cartesian tree is a binary search tree with respect to keys and a heap with respect to priorities

There is a probabilistic estimate on the height of a Cartesian tree logarithmic in the number of its nodes ([10],
see Sec 34 below) At the same time, an algorithm for constructing a Cartesian tree spends substantially less
time on balancing nodes It is interesting to compare how the choice of the underlying data structure affects the
properties of the SLP returned by the algorithm

284

3.2. Rytter’s algorithm and its bottleneck. Rytter [9] proved the following theorem

Theorem 3.1. Given a string S of length n and its LZ factorization of length k, one can construct an SLP for
S of size O(klogn) in time O(klogn)

The proof of Theorem 3 1 contains an algorithm for constructing an SLP We recall some key ideas of the
algorithm, since they are important for the further discussion

An AVL grammar is an SLP whose parse tree is an AVL tree The key operation of the algorithm is the
concatenation of AVL grammars The following lemma provides an upper bound on the complexity of this
operation

Lemma 3.2. Let S1,Sy be two AVL grammars Then we can construct in time O(|h(S1) — h(S2)|) an AVL
grammar S = Sy - Sy that derives the text Sy - Sa by adding only O(|h(S1) — h(S2)|) nonterminals

PROBLEM: SLP construction using factorization.

INPUT: a text S and its LZ factorization Fy, Fy, , Fy

OutpuT: an SLP S that derives S

RYTTER’S ALGORITHM: The algorithm constructs an SLP by induction on k
Base. Initially, S is equal to the terminal rule that derives S[0]

Main loop. Let i > 1 be an integer, and assume that an SLP S that derives F} - F5 - - F; has already been
constructed Since the LZ factorization of S is fixed, an occurrence of F;y1 in Fy - F - - F; is known The
algorithm takes a subgrammar of S that derives F;1, and obtains rules S;, ,S; such that Fij;1 = S1-S2---Se

Since S is balanced, we have £ = O(log|S|) Using Lemma 3 2, the algorithm concatenates the rules in some
specific order (see [9] for details) and sets the next value of S to be equal to the result of concatenating the
previous value of S with Sy - =Sy

It is well known that maintaining the balance of an AVL tree is quite a difficult task After adding a new node
that breaks the balance of an AVL tree, the modified tree should be rebalanced using a local transformation
called a rotation There are two types of rotations Both are presented in Fig 2 Every rotation may generate at
most three new nodes (such nodes are marked by primes in Fig 2) Also, every rotation may generate at most
three unused rules

rotation

rotation

Fig 2 Two types of rotations of an AVL tree

It follows from Lemma 3 2 that concatenating two AVL grammars with drastically different heights generates
a lot of new nodes Adding a large number of new nodes to an AVL grammar generates many rotations In the
main loop of Rytter’s algorithm, the height of the current AVL grammar S is constantly growing At the same
time, at each iteration S concatenates with AVL grammars of relatively small height The following example
shows that the total number of rotations in Rytter’s algorithm may be substantially greater than the optimal
one

285

Example 1. Let S = a®"bc?” where n is a fixed integer Consider the LZ factorization of S:

S:a.a.aQ.a4. .a2n71_1.b.c.c.c2.c4. .62"’71_1
Let us denote the factors by Fi, Fa, , Fa,y3in the order they occur in the LZ factorization Let Fi,Fa, Fanis
be SLPs that correspond to the factors
Let us estimate the number of rotations that can be generated in the sequence of concatenations (((F; -

Fy)-Fs3)) Fa,43 No rotations are needed to concatenate Fy,Fy, | F, 1, since at each step we concatenate
complete binary trees of equal height So the parse tree of Fy - F» - - Fp41 is a complete binary tree of height
n, and the next concatenation (Fy -Fo- -Fy,yq)-F,ui1 generates an AVL tree of height n+1 Obviously, each

successive concatenation breaks the balance of the current AVL tree and generates at least one rotation Thus
the whole concatenation generates at least n + 1 and at most ©(n?) rotations (the upper bound follows from the
bound on the number of new nodes from Lemma 3 2)

Note that if the algorithm could choose the optimal order of concatenations, namely,

((((F1-F2)-F3)) Fpp1) (((Fny2-Fois) Fora)) Fangs),

then it would generate no rotations at all

One of the possible directions for optimizing Rytter’s algorithm is to determine a “good” order of concatena
tions Another one is to minimize the number of queries to an AVL grammar Minimizing the number of queries
to AVL grammars becomes important when the size of the input text becomes huge and we cannot store an AVL
tree in the memory Formally, this means that the cost of a query to an AVL tree is greater than the cost of
computations using the random access memory Our next example shows that several factors can be processed
together if they occur in a single SLP

1

Example 2. Let n > 0 be an integer and S = b-a2" -b-a?" - -b-a The length of S is equal to 2" +n — 2

Consider the LZ factorization of S:

. on—2_ on—2 on—3
2.q4...42 Lopa?” " oba? - ba

b-a-a-a”-a a

Let S; be an SLP that derives b-a®" It is obvious that all other factors starting with b- 42"~ occur in S
n—2

Therefore, one can process them together So we can construct an SLP S, that derives b-a®> , an SLP S3 that

derives b - azn_g, etc Finally, we can concatenate the SLPs in the following order: S;-((Sp—3- (Sn—2-Sn-1)))

3.3. Optimization of Rytter’s algorithm. The main ideas of our improved algorithm are to process several
factors together and to concatenate each group of factors choosing an optimal order The intuition behind the
algorithm is very simple: if it has already constructed a huge SLP, then most factors occur in the text generated
by this SLP and can be processed together

MoDIFIED RYTTER’S ALGORITHM Using the input text S and its LZ factorization Fi, F5, , F}, the algorithm
constructs an SLP S that derives S

Base. Initially, S is equal to the terminal rule that derives S[0]

Main loop. Let S be an SLP that derives the text F; -Fy- - F; where0 <i <k Let £ € {1, ,k—i} bethe
largest integer such that each factor from the set Fy11, , Fippoccursin Fy-Fy- -F; Since the LZ factorization
is fixed, the value of £ can be obtained by a linear search on the factors SLPs F;y1,F;12, ,F;;¢ that derive the
texts Fj+1,Fita, ,Fire can be computed by an application of the subgrammar cutting algorithm (analogously
to [9))

Next, the algorithm concatenates F;11, ,F;3r It optimizes the order of concatenations using dynamic
programming Let ¢(p, ¢) be the function that is calculated by the following recurrence formula:

0 ifp=gq,
e(p,q) = { mini_,(¢(p,r) + o(r + 1,9) + [log(| firp| + -+ + | firr|)
—log(| fitrt1] + -+ + [firq)]) otherwise
The value ¢(p, q) is proportional to the upper bound on the number of rotations of a grammar tree that are
performed during the concatenation of F),,F,11, ,F; The upper bound follows from Lemma 3 2 and from the

estimate on the height of an AVL tree from [5] Typically, the upper bound is too large So it is more correct to
regard the function ¢(p, q) as a heuristic using which the algorithm obtains “good” groups of factors

286

The algorithm fills an £ x £ table with the values ¢(p,q), 1 < p,q < ¢ In the case where p < ¢, it additionally
stores the integer r € {p,p+1, ,q— 1} on which the minimum of the following expression is reached:

o(p,r) +o(r+1,9) + |log(|Fiyp| + +|Firr|) —log(|Firra| + 4 [Firql)|

The order of filling out the table is as follows: all cells (p,¢) such that p > ¢ are set to be equal to 0, next the
algorithm fills the cells such that ¢ —p = 1, next it fills the cells such that ¢ —p = 2, etc Thus the algorithm does
not recompute recursively the values ¢(p,r) and ¢(r + 1, q), since they already exist in the table So every single
value ¢(p, ¢) can be calculated in time O(k) Figure3 presents the pseudo code of the corresponding procedure
Thus the algorithm fills out the table using time O(¢?) and space O(¢?)

result = +oc;
L=0, R=|Fitp|+ -+ |Fitql;
for (intr=p; r<q r++;) {
L+ = |Figs;
R—= |Fi+r|;
tmp = o(p,r) + o(r +1,q) + |log L — log R|;
if (tmp < result)
result = tmp;

}

Fig 3 A pseudo code that computes the value p(p, q)

Finally, the algorithm reads the value of r from the cell (1,¢) and determines the order of concatenations for
Fiv1, ,Firg in time O(¢) Using this order, it constructs an SLP F that derives Fi41 - Fi1o- - Fj3; Finally,
the algorithm concatenates S and F and sets S to be equal to S - F

Theorem 3.3. Let fi, fo, -, fr be the LZ factorization of a text w The above algorithm constructs an SLP
for w of size O(klogn)

Proof essentially repeats the corresponding part of the proof of Theorem 3 1, but we reproduce it for the sake of

completeness

Let us prove the theorem by induction on the number of factors The base is clear

Assume that an SLP S that derives the text F; - F - - F;, where 0 < ¢ < k, is already built and has size
O(ilog|Fy - F> - - F;|) = O(ilogn) Let Fi11, , Fj+¢ be the next factors that occur in Fy - F - - F;
Let us consider subgrammars F;y1,F;1 o, [F;1p of S that derive the texts Fji1, Fit2, ,Fjy¢, respectively
The height of F;; is not greater than 1 4404log|F;y;|, see [5] Hence, by Lemma 3 2, the number of new rules
that the algorithm adds at each step of constructing an SLP F that derives Fjiq - Fiyo - - Fiy¢ is at most

O (log |Fiy1] + log |Fyq2| + -+ - +log|Fi1¢]) = O(logn) Each rotation of an AVL grammar generates at most
three new rules The total number of rules in the SLP F that are absent in the SLP S is at most O({logn)
Analogously, the number of new rules that the algorithm adds during the concatenation of S and F is O(logn)
Hence the size of the SLP S F that derives the text Fy - Fy - - Fiyp is O((¢ + £) logn)

The time complexity of the modified Rytter’s algorithm cannot be less than the complexity of the original
algorithm from [9], since the latter is a special case of the modification described above when all groups are of
size 1 On the one hand, the new algorithm generates less rotations, but on the other hand, it spends some extra
time on calculating the order of concatenations The cumulative influence of both factors on the execution time
is unclear In the next section, we propose a practical comparison of the algorithms under discussion

3.4. SLP construction using Cartesian trees. As we have already noticed, SLP construction algorithms
that use AVL trees spend a lot of time on balancing We think that the following idea may be useful for solving
the SLP construction problem: to replace the data structure used for representing SLPs with another one that
would allow the algorithm to spend less time on balancing In this section, we present an algorithm that construct
SLPs using Cartesian trees

There is a probabilistic bound on the height of a Cartesian tree that is logarithmic in the total number of
nodes (see [10]) Namely, if the priorities of nodes are chosen at random, independently, and with the same
distribution, then the expected height of a Cartesian tree with n nodes is O(logn) Also, for every fixed constant

287

¢ with ¢ > 1, the probability that the height of a Cartesian tree with n nodes is greater than 2¢clnn is bounded
—cln(c/e)
by n (%)

To f:onstruct an SLP from an LZ factorization, we need two operations: cutting a subtree with specified
positions and concatenating two trees For a Cartesian tree, it is easy to implement the following operations:
split is the operation of splitting a tree into two subtrees with a specified position, and merge is the operation
of merging two trees But the standard implementation of the merge operation requires the following condition:
every key of the first tree should be less than any key of the second tree Hence it is necessary to regenerate the
keys of the tree obtained after applying the split operation This situation appears in the main loop of the SLP
construction algorithm After the algorithm has constructed a tree T that derives a prefix of the input text, it
cuts a subtree T” of T' that derives the next factor and applies the merge operation to T and 7’ Therefore, the
algorithm should completely regenerate the keys of 7" before merging 7" and 77 To make this operation efficient,
it is profitable to avoid explicitly storing keys Next we explain why it is possible !

Let T be an arbitrary Cartesian tree, and assume that the information about its keys has been lost One can
recover the linear order relation on the keys using only the tree structure The recovering algorithm recursively
traverses the tree in the following order: the left subtree, the root, the right subtree The number of the current
node in this order is greater by one than the number of nodes in the subtree that the algorithm has visited before
visiting the current node Therefore, we are able to avoid explicitly storing the keys

Definition 3.4. A Cartesian tree with implicit keys is a Cartesian tree that does not store the information about
keys

In what follows, we assume that the key of a node of a Cartesian tree 7" with implicit keys is equal to the
number of the key in the linear order on all keys of 7' We denote the subtree of 7" with the root at a node T;
by T;, and the total number of nodes in this subtree, by count(7;) If Ty and T, are the left and right children
of T;, respectively, then we use the following short notation for this fact: T; = (Ty,T,) It may happen that the
nodes Ty and/or T, are empty For example, if T; is a leaf, then both T; and T, are empty

Let us describe an implementation of the split and merge operations for Cartesian trees with implicit keys

The split operation. The input is a Cartesian tree T' with implicit keys and a positive integer k where k < |T'|+1
The output is a pair of Cartesian trees L and R with implicit keys such that L contains all nodes of 7" with keys
less than k£ and R contains all the other nodes of 7' By definition, the operation produces two empty trees on
the input (empty tree, 1)

The algorithm starts from the root Ty of T and works recursively The following cases can occur:

(S1) If k < count(Ty) + 1, then Tp lies in R and the algorithm splits the subtree Ty Assume that the split
operation returns two trees L’ and R’ on the input (T',k) Then the algorithm returns L = L’ and
R=(R,T,)

(52) If k > count(Ty) + 1, then Tj lies in L and the algorithm splits the subtree T, Assume that the split
operation returns two trees L’ and R’ on the input (T, k — count(T;) — 1) Then the algorithm returns
L=(T¢,L') and R=FR

We would like to emphasize that at each node T; the algorithm stores the number count(7;) Since at every
step, the algorithm either terminates or recursively calls the split operation with a subtree of smaller height, the
time complexity of the algorithm is O(log |T'|)

Since the parse tree of an SLP is a maximal binary tree, we should modify the split operation to guarantee
that the resulting trees are maximal To achieve this aim, it suffices to delete all nodes that have exactly one
child from both output trees Formally, if a node 7} has a single child T}, then we delete 7; from the tree If T}
is the root, then we choose T}, as the new root after deleting 7; The priorities of nodes do not change

Obviously, if the input tree T' is maximal, then at each step of the algorithm, in each output tree L or R
there is at most one node with a single child Thus the time complexity of “maximizing” both trees L and R is
O(log|T|) In fact, a practical implementation of the maximization procedure does not require a separate pass
through the output, since it can be integrated into the algorithm In what follows, by the split operation we
mean its modified version that returns maximal trees

1Unfortuna.tely, the elegant idea of a Cartesian tree without explicitly stored keys has not yet been considered in the academic
literature A rather complete account of this idea is presented in the Internet publication [8] in Russian We know for a certainty
that it was first applied at an ACM programming contest in 2002 by N V Dourov and A S Lopatin (members of the student team
of the St Petersburg State University)

288

The merge operation. The input is two Cartesian trees T’ and T with implicit keys The output is a Cartesian
tree T' with implicit keys that contains all nodes from both 7" and T” By definition, if T” is empty, then the
operation returns T, and vice versa, if T” is empty, then the operation returns T’

The algorithm starts from the roots T, and T§ of the trees T7 and T”, respectively, and works recursively
Let Tg = (13, T7) and Ty’ = (T}/,T};) Since the priorities of all nodes were chosen at random and independently,
we suppose that they are pairwise distinct The following two cases can occur:

(M1) If the priority of the node T} is greater than that of the node T}, then the algorithm chooses T as the
root of T The left subtree is equal to T;, and the right subtree is equal to the tree returned by the
merge operation on the input (T;,, T

(M2) If the priority of the node Tj is less than that of the node T}, then the algorithm chooses Tj)' as the root
of T The right subtree is equal to T;/, and the left subtree is equal to the tree returned by the merge
operation on the input (77, Tg)

Since at each step of the recursion, the algorithm walks down either the left subtree or the right subtree, its
expected execution time is O(log [T’| + log |T"')

As in the case of the split operation, we should modify the merge operation in order to use it in the SLP
construction There are two problems The first one is that we should guarantee that the resulting tree is a
maximal binary tree The second one is that we should guarantee that the array of leaves of 7" is the concatenation
of the array of leaves of T” and the array of leaves of 7" Both problems can be solved using the following simple
modification of the algorithm

Let T} be the rightmost leaf of 7" and T’ be the leftmost leaf of 7" Note that the extreme leaves in Cartesian
trees with implicit keys are defined unambiguously Let y’ and y” be the priorities of T and T}, respectively
Let y. = min(y’,y") and y* = max(y’,y") We set the priorities of 7] and T}’ to be equal to y. Applying rules
(M1) and (M2), the algorithm eventually reaches a configuration with the current roots Tj and T equal to the
leaves T} and 7', respectively At this moment, the algorithm adds the new node U = (5{, T}') with priority y*

and completes the constr}}ction/of the tree T' by adding the three element subtree T! /\ T]f’ instead of a two
N

element subtree (77 / ’ or \ T) Clearly, the modified algorithm takes the same time O(log|T"| + log|T"|)
as the standard algorithm It is easy to check that if the trees 77 and 7" are maximal, then the output tree T
is maximal too Moreover, T is a concatenation of T and T" in the sense of SLPs, see Sec 2 In what follows,
by the merge operation we mean its modified version that returns a maximal tree

We say that an SLP is a Cartesian SLP if its parse tree is a Cartesian tree with implicit keys Now we
introduce an algorithm for constructing a Cartesian SLP

ALGORITHM FOR CONSTRUCTING A CARTESIAN SLP
INPUT: a text S and its LZ factorization F, F5, , F,
OutpuT: a Cartesian SLP that derives S

Base. Initially, S is equal to the terminal rule that derives F; = S[0]

Main loop. Assume that a Cartesian SLP S that derives the text Fy - F5 - - F; has already been constructed
for a fixed integer ¢ where i > 1 The factor F;;1 occurs in the text S = Fj - Fy - - F; by the definition of the
LZ factorization Let £ and r be positions in S such that Fjy; = S[¢ r] Let £* and 7* be the priorities of the
leaves S[f] and S[r] in S, respectively Since the algorithm stores count(S;) in each node S;, the values of £* and
r* can easily be computed from ¢ and r

The algorithm invokes the split operation with the input (S,£*) Let R be the rightmost tree in the output
Next the algorithm invokes the split operation with the input (R, r* — £*) The leftmost tree in the output is a
Cartesian SLP F that derives Fj;; Finally, the algorithm invokes the merge operation with S and F, and the
output is a Cartesian SLP that derives F} - F5 - - Fiy1

Theorem 3.4. The expected execution time of the presented algorithm on a text S of length n and its LZ
factorization of size k is O(klogn) The expected size of the SLP returned by the algorithm is O(klogn)

Proof At each step, the algorithm applies at most two split operations and at most one merge operation It
follows that the expected execution time of every step is O(logn) Since the algorithm consists of exactly k steps,
its expected execution time is O(k logn)

289

At every step of each operation (split or merge), the algorithm generates one new nonterminal rule Since the
time complexity of each operation is O(logn) and the operations are invoked 3k times in total, the expected size
of the output SLP is O(klogn) O

4 PRACTICAL RESULTS

4.1. The setup of the experiments. Obviously, the nature of input strings highly affects the compression
time and compression ratio In this paper, we consider three types of strings:

e DNA sequences (downloaded from the DNA Data Bank of Japan, http://www.ddbj.nig.ac.jp);

e Fibonacci strings;

e random strings over a four letter alphabet

These types of strings were chosen for the following reasons Fibonacci strings are known to be one of the best
inputs to the SLP construction problem Thus they allow us to estimate the potential of SLPs as a compression
model Random strings are considered to be incompressible, and, potentially, they are the worst input to the
SLP construction problem DNA sequences form a class of well compressed strings widely used in practice

We compare the SLP construction algorithms presented in Sec 3 with classical compression algorithms from
the Lempel Ziv family Our test suite contains two implementations of the Lempel Ziv algorithm [14]: an
algorithm with small (32Kb) searching window and an algorithm with infinite searching window The test
suite also contains an implementation of the Lempel Ziv Welch algorithm [13] The source code is available at
http://code.google.com/p/overclocking/ All algorithms were run in the same environment on a PC with
the following characteristics: Intel Core i7 2600, 3 4GHz, 8 Gb operational memory, OS Windows 7 x64

4.2. The experimental results. As expected, all SLP construction algorithms work infinitely fast on Fi
bonacci strings and construct extremely compact representations For example, on the 35th Fibonacci word of
size 36 9MDb, the algorithms return the answer within 1ms and build SLPs of size 100
Figures 4 7 present the main experimental results on random strings and DNA sequences For convenience,
we adopt the following notation for algorithms:
o Lempel Ziv algorithm with 32Kb search window;
u Lempel Ziv algorithm with infinite search window;
A Lempel Ziv Welch algorithm;
o Rytter s algorithm from [9];
o modified version of Rytter s algorithm from Sec 3 3;
A Cartesian SLP construction algorithm from Sec 3 4
The performance of a compression algorithm is estimated in terms of the compression ratio and execution
time We calculate the compression ratio as the ratio of the size of the compressed presentation to the size of the
input text, measuring it in per cent For example, the formula for the SLP compression ratio looks like E“ -100
We also calculate the number of rotations for SLP construction algorithms that use AVL trees
Figure 4 shows how the suggested modification of Rytter’s algorithm affects the number of rotations Obvi
ously, the modified algorithm uses substantially less rotations on texts of length more than 10Mb Figure 4 shows
that the suggested heuristic is efficient It is very interesting that the number of rotations depends regularly
on the size of the input text, while the execution time depends weakly on the nature of the input text for all
algorithms We have no theoretical explanation of these observations

290

4 million
(]
(e}
3 5 million
O
3 million
o]
2 5 million) 5 million °
o]
(o]
O
2 million ° 4 million o
P° o
OO (o] ©
15 million = 3 million °
[e)
oO ° o °
1 million 2 million °
& o
& o
P o
o]
0 5 million} & 1 million S
069 o oo ° °° © ° e0o
-M.. QOO-..0....0....0....
5Mb 10Mb 15Mb 20Mb 25Mb 5Mb 10Mb 15Mb 20Mb 25Mb

Fig 4 The statistics of AVL rotations on DNA sequences (left) and on random strings (right)

As discussed in Sec 3 3, a gain in the number of rotations does not guarantee a gain in the speed of constructing
an SLP, since the modified algorithm spends extra time on calculating the optimal order of concatenations We
compare the speed of all SLP construction algorithms using the following two tests In the first one, the algorithms
stored all SLPs being constructed in the random access memory, while in the second one, SLPs were stored in an
external file, so that every rotation of an AVL tree forced I/O operations with the file Figures 5 and 6 present
the results of both tests on DNA sequences and random strings, respectively It follows from the experimental
results that the modified algorithm from Sec 3 3 works several times faster than Rytter’s algorithm The modified
algorithm works two times faster on random strings and three times faster on DNA sequences if SLPs are stored
in the random access memory Also, it works five time faster on DNA sequences and three times faster on random
strings if SLPs are stored in a file system The algorithm that use Cartesian trees works faster than Rytter’s
algorithm, but slower than the modified algorithm The reason is that the heights of the constructed Cartesian
trees are substantially larger than the heights of the corresponding AVL trees The experimental results show
that the average height of an AVL tree is equal to 21 8 and the average height of a Cartesian tree is equal to
47 8 Thus the Cartesian SLP construction algorithm processes more rules than the algorithms using AVL trees
This cancels the gain achieved from the simplicity of maintaining the balance in Cartesian trees

Figure 7 presents the experimental results for the compression ratio achieved by SLP construction algorithms
and by classical compression algorithms from the Lempel Ziv family We see that the algorithms using AVL
trees achieve similar values of the compression ratio, which are twice less on the average than the compression
ratio achieved by the LZW algorithm It is interesting that the ratio of the compression ratios achieved by the
algorithms using AVL trees to the compression ratio achieved by the LZW algorithm does not depend on the type
and length of the input text The compression ratio of the algorithm that uses Cartesian trees is substantially
worse than the compression ratio of the other algorithms In this case, we also observe that the ratio of the
compression ratios weakly depends on the type and length of the input text

5 CONCLUSION

Our experimental results show that both Rytter’s algorithm and the modified algorithm achieve the same
compression ratio But the running time of the second algorithm is substantially smaller Since using a file
system is inevitable with the growth of the input, it is worth noticing that the modified algorithm is more stable
with respect to the growth of the input than Rytter’s algorithm

291

o
140 sec 16} 7 min
120 sec ° 6 min
o o
o
100 sec 5 min
o o
°© o
80 sec 4 min
o o
® © o
o A, .
60 sec 3 min o
A o
o A) A A
o LI oo A
40 sec ud) A A . 2 min o a A
.
o A O& A
ag& M‘ Ao o aA
e, .0. . . AA& ® o
20 sec 'o® 1 min s *
S & o ﬁ ee **
& - oo°®
4Mb 8Mb 12Mb 16Mb 20Mb 4Mb 8Mb 12Mb 16Mb 20Mb

Fig 5 The SLP construction time on DNA sequences when SLPs stored in the random access
memory (left) and in an external file (right)

o
140 sec 7 min ©
120 sec 6 min
100 sec o A 5 min
° A
80 sec ° 4 min
60 sec 3 min
o
A
40 sec 2 min = A
o] ° °
A
; A
20 sec 5 ° 1 min °
A A
o ° o °
I s
5Mb 10Mb 15Mb 20Mb 25Mb 30Mb 5Mb 10Mb 15Mb 20Mb 25Mb 30Mb 35Mb

Fig 6 The SLP construction time on random strings when SLPs are stored in the random
access memory (left) and in an external file (right)

In the paper, we present a Cartesian SLP construction algorithm This algorithm has a similar execution time
compared to the other discussed SLP construction algorithms, but provides a substantially worse compression
ratio and the height of the output tree This fact is important for searching algorithms that work directly with
compressed representations Thus our aim to improve the performance of SLP construction using an efficient
data structure was not achieved Now we think that this aim is hard to achieve It appears that searching for
new heuristics based on AVL trees that allow one to construct more compact SLPs is a more productive idea

292

A
28 % AAM
at4 4 A
'Y
26 % A PFEEEN ‘AﬂA A A N
NI AL A
a
24 % 36 %
A
a
A
y 3
22 % 33 % 1A
“ A
20 % 30 %A
A A
e A
8% 4% 27 %
8 8 sts A
e
gg- E% . % s) »
16 % e e . s . 24 % g
° 0
[b= 8 0
14 %+ 2 —ts - 21 %ty
50 .75 oo o a” o
L Trews %0 s
o b m oo P
12 % 18 % -
r'N Py = 8
A Al A A A °
o o8 anp AN A A A, N
10 %+ 15%%
. L Ro O = o
== b T . g™ - - - [N
L] L™ o, L L} -
8 % = . 12 %t A
. . 4
[] - T N
.
6 %" 9% -
4% 6 %
2% 3%
3Mb 6Mb 9Mb 12Mb 15Mb 18Mb 21Mb 24Mb 27Mb 4Mb 8Mb 12Mb 16Mb 20Mb 24Mb 28Mb 32Mb 36Mb

Fig 7 The compression ratio achieved on DNA sequences (left) and on random strings (right)

All tested SLP construction algorithms are worse than the classical compression algorithms from the Lempel
Ziv family both in the achieved compression ratio and the execution time SLP construction algorithms are of
interest (at least from the theoretical point of view), since they provide a well structured data representation that
allows one to solve some classical searching problems without decompressing However, the question on what
volumes of input data SLP searching algorithms will be more efficient than classical string searching algorithms
is still open We think that it is one of the main research directions in this area

ACKNOWLEDGMENTS

The authors would like to thank Professor Mikhail V Volkov for his critical notes and continuous support
The authors would like to thank the anonymous referee for his remarks and suggested improvements to the
original version of the paper

The authors acknowledge support from the Russian Foundation for Basic Research, grant 10 01 00793

Translated by the authors

REFERENCES

1 A Apostolico, G M Landau, and S Skiena, “Matching for run length encoded strings,” J Complezity, 15,
4 16 (1999)

2 I Burmistrov and L Khvorost, “Straight line programs: a practical test,” in: Procedings of the First Inter
national Conference on Data Compression, Communications and Processing (CCP) (2011), pp 76 81

3 M Charikar, E Lehman, D Liu, R Panigrahy, M Prabhakaran, A Sahai, and A Shelat, “The smallest gram
mar problem,” IEEE Trans Inform Theory, 51, 2554 2576 (2005)

4 T Kida, T Matsumoto, Y Shibata, M Takeda, A Shinohara, and S Arikawa, “Collage system: a unifying
framework for compressed pattern matching,” Theoret Comput Sci, 298, 253 272 (2003)

293

10
11

12
13
14

15

294

D Knuth, The Art of Computer Programming, Vol 3: Sorting and Searching, 2nd edition, Addison Wesley
(1998)
Y Lifshits, “Processing compressed texts: A tractability border,” Lect Notes Comput Sci, 4580, 228 240
(2007)
W Matsubara, S Inenaga, A Ishino, A Shinohara, T Nakamura, and K Hashimoto, “Computing longest
common substring and all palindromes from compressed strings,” Lect Notes Comput Sci, 4910, 364 375
(2008)
A Polozov, “Cartesian tree Part 3: Cartesian tree with implicit keys,” blog post,

http://habrahabr.ru/blogs/algorithm/102364/

W Rytter, “Application of Lempel Ziv factorization to the approximation of grammar based compression,”
Theoret Comput Sci, 302, 211 222 (2003)

R Seidel and C Aragon, “Randomized search trees,” Algorithmica, 16, 464 497 (1996)

Y Shibata, M Takeda, A Shinohara, and S Arikawa, “Pattern matching in text compressed by using anti
dictionaries,” Lect Notes Comput Sci, 1645, 37 49 (1999)

A Tiskin, “Faster subsequence recognition in compressed strings,” J Math Sci, 158, 759 769 (2009)

T Welch, “A technique for high performance data compression,” Computer, 17, 8 19 (1984)

J Ziv and A Lempel, “A universal algorithm for sequential data compression,” IEEE Trans Inform Theory,
23, 337 343 (1977)

J Ziv and A Lempel, “Compression of individual sequences via variable rate coding,” IEEE Trans Inform
Theory, 24, 530 536 (1978)

	Abstract

	1. Introduction

	2. Preliminaries

	3. SLP construction algorithms

	3.1. SLPs, factorizations, and trees

	3.2. Rytter's algorithm and its bottleneck

	3.3. Optimization of Rytter's algorithm

	3.4. SLP construction using Cartesian trees

	4. Practical results

	4.1. The setup of the experiments

	4.2. The experimental results

	5. Conclusion

	Acknowledgments

	References

