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INTRODUCTION

We consider the time-optimal problem [1-4] for a linear system with fast and slow variables [5-9]
and smooth geometric constraints on the control. An asymptotic representation of the optimal time
is constructed and validated. In the present paper, we use the methods developed in [10-13].

Other statements of singularly perturbed control problems are given in [6,7,14-16]. The systems
investigated in the present paper and also in [14,15] do not belong to the class of systems studied
in [16], since they do not satisfy the assumptions made in [16].

1. PROBLEM STATEMENT

Consider the time-optimal problem for a linear autonomous system with fast and slow variables
in the class of piecewise continuous controls with smooth geometric constraints:

{ y=Ay + Az + B, (L.1)
€z = - az + Bou, a >0,
U: |Jull <1 (1.2)
Here and elsewhere, || - || is the Euclidean norm,
y(0) =y’ 2(0) =2, (1.3)
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ASYMPTOTIC REPRESENTATION OF SOLUTION S23
y(©) =0, 2(0) =0, © — min, (1.4)

g > 0 is a small parameter, y € R™, z € R, u € R", and m < r < n.
Condition 1. KerBj = {0} (or ImBy; = R™).

Degenerate problem (for € = 0):
v = Aoy + Bou, U:ull <1, (1.5)

y(O) = yO’ y(®0) = 07 @0 - min, (16)
where By = By + Oé_lAlng.
Condition 2. rank By, AgBy, ... ,Ag_lBo] =n.

Conditions 1 and 2 provide the complete controllability of the pairs (—al, Bs) and (A, By),
respectively.

Condition 3. rank By =r € [2,n — 1].

Condition 4. Let a pair (Ag, Bo) be such that, if By e4otry || By eotry on some interval, then
r1 || r2. Here, * means transposition.

Note that Condition 2 follows from Condition 4; nevertheless, Condition 2 is given here because
it is a known condition, under which the maximum principle is a sufficient condition for the opti-

mality of the control. Condition 4, as shown in [15], provides the uniqueness of the representation
of an optimal control in the degenerate problem in terms of the initial vector of the adjoint system.

Condition 5. The initial vector 3° is such that problem (1.5), (1.6) is solvable.

Introduce the notation

0 Ay Ay By
$:<y>’ $0:<y0>, A€: o s BE: 1 5

0 — I
9 5B2

where [ is the identity matrix.
As shown in [5], if Conditions 1 and 2 are satisfied, there exists 9 > 0 such that, for all
0 < e < gp, the pair (A, Be) is completely controllable.
In [15], it is proved that, for any 20, there exists g > 0 such that, for any ¢ € (0,q), prob-
lem (1.1)—(1.4) is solvable and
O(e) — Oy, (1.7)

e—0
where O is the optimal time in degenerate problem (1.5), (1.6).
Define ¢ = ¥(e) = O, — Og. In view of (1.7), we have
¥(e) — 0. (1.8)
e—0
In view of the complete controllability of the system from (1.5), which is equivalent to Con-
dition 2, and of the form of constraints on the control, Pontryagin’s maximum principle [1] is a
necessary and sufficient condition for the optimality of the control. The adjoint system has the
form ¢g = —A{pg. Therefore, ¢y(t) = eA6(®0—t) \ ) where )y is a constant vector. According to
the maximum principle, the optimal control ug(t) satisfies the relation

(Wo(t), Bouo(t)) = i (do(t), Bow) = oo (B3 0o, u) = 155l
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524 DANILIN, KOVRIZHNYKH

Here and elsewhere, (-, -) is the scalar product in the corresponding finite-dimensional space. Then,
for t such that B e (G-t )\, # 0, the optimal control in the degenerate problem has the form

Bak eA46(Qo—t) Ao
W g om0 o

Definition. Any vector \g satisfying (1.9) will be called a vector generating the optimal control.

It is known [4, p. 171] that the optimal control in problem (1.5), (1.6) is unique. From (1.5),
(1.6), and (1.9), we obtain

S}

0= er@oyO + / o By eAo(®0~) ),

. dt. 1.10
135 45(En-.] 0
Changing the integration variable by the formula 7 = ©¢ — ¢, we come to the relation

O
0=ty | <co<f§§?,§i>1/2 dr,  Culr) = 7 By By A, (1.11)
0
which is equivalent to (1.10). Thus, the vector \g is a vector generating the optimal control if and
only if Ao satisfies (1.11).
Define also ¥(7) = (Co(7)Xg, Ao). As shown in [10], there exists a vector y° such that the
corresponding optimal control in the degenerate problem wug(t) has a unique discontinuity point
t € (0,0q), where

BieM®ot N, =0,  BiA5eM©DN\ £0, and  Vt£t Bieto®0 ) £0. (1.12)

In what follows, we assume that the initial vector y° satisfies conditions (1.12). Note that the
condition of a unique discontinuity point of the optimal control in the degenerate problem is not

essential. Since the function B e46(®0=1)

Ao is analytic, it can have only a finite number of zeros.
The analysis of an optimal control with a finite number of discontinuity points is similar to the
case of one discontinuity point but is more complicated from the technical point of view.

Define 7 = ©y — t. Without loss of generality, assume that

Aor I, I, 0
e By = ; thus, Q= Cy(r) = . (1.13)
0 nxr O O nxn

2. BASIC RELATIONS

Consider original problem (1.1)—(1.4). Relations (1.9), (1.10) are also satisfied for the perturbed
problem with Ag, By, o, 3°, uo(t), and \g replaced by A., B, O, 2°, u.(t), and r., respectively:
0= 6A5963;‘0+/95 eAE(@E_t)BE B; eA;(QE_t)TE

0 | Bz e (==t ]|
T =0, —1t, we get

dt. Changing the integration variable by the formula

Oc

AT x A*r
e sTB_ B* ety
0= ASQSO/ £ ° dr. 2.1
R ) e @1)

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 281 Suppl. 1 2013



ASYMPTOTIC REPRESENTATION OF SOLUTION 525

Equation (2.1) is positively homogeneous with respect to the vector r.; hence, we assume that
|lre|l = 1. The following lemma was proved in [15].

Lemma 1 [15]. Let the pair (Ao, By) satisfy Condition 4. If Iy and ly are vectors generating

the optimal control in problem (1.5), (1.6) and ||l1]| = ||l2|| = 1, then l; = la. O
Thus, if Condition 4 is satisfied, the normed vector ry generating the optimal control in limit
problem (1.5), (1.6) is unique and |r¢|| = 1 = re 2 70; Iroll = 1. In addition (see [15]), if
E—>
1
70§1) T((] )
Te = ) and rg = @ |’ we have
Te rg
2 1
=0, gl =1, (2.2)

(1)

and ry’ is a vector generating the optimal control in degenerate problem (1.5), (1.6). Thus,
ue(t) U0 (t) uniformly on all closed sets not containing discontinuity points of the limit control.
e—

Write equations (2.1) in the form

96D€(7') (D:(T)rgl) + ; e‘o‘:B;rg))
0=y, + 2+ / d

. T, (2.3a)
|Dz(ryr + Lemal Byrl?)|

0

o o 1 7 . D*(T)Tél) - ! e_a:B’zkrg)
O=e“c '+ /e_o‘eB2 c 9 € . @ dr, (2.3b)
£y HD;(T)T‘E + e Bjre H
where R
Y. = e00- Y, ze = e(al + EAO)_1 (eAO@E —eT vl I) Aqp 20,
DE(T) = erTBl + (Oé] + EAo)_l (erT — e_a:I) A9 Bs. (24)
We will seek the vector 7’§2) in the form

r@ =e(rP 4@, 1(e) —0. (2.5)

Using (2.4), transform the expression

£

1 T * * T
DX (r)r + . e e Byr® = BieMT), — 235 (ol + A TTALeMNTA e Biv.,  (2.6)

where \, = r{gl) and v, = —Ajy(al + EAS)_lrél) +1/e r{.@. Note that the vectors rél) and 7{9 are

uniquely recovered from A; and v.. Now, let A; and v, be new unknown vectors. Define
Ae) = A =X,  v(e) =ve — (2.7)

where 1y = r(()2) —1/a Aj5N. By relations (2.2), (2.5), we have A(e) " 0 and v(g) " 0. Thus, the
E— E—

problem reduces to finding the asymptotics of A\(¢), v(¢) from (2.7) and of ¥(¢) from (1.8) as ¢ — 0.
For this, we first study the asymptotics of the integrals in (2.3) as ¢ — 0. In expanding the
corresponding integrands, we take into account the boundary-layer character of the values in these
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526 DANILIN, KOVRIZHNYKH
functions as well as the appearance of singularities for 7 = 7 in (2.3a) because of conditions (1.12).
We have

1

DXyt + e Byr® = BietiAg + e Bivo + Bie M) + e« Bv(e) + R(r,e, A(e)),

where R(7,¢,\(€)) = —¢/a B3 Al (al + eAf) L Ase07 (N + A(e)) = O (e) as ¢ — 0 uniformly in
T € [0,01] for ©1 > ©¢. Write equation (2.3b) in the form
CE

O=ec <2

dr. (2.8)

@s * T * T
n /e_af B BeAi™\g + e %< By + BieoTA(e) + e %< Biv(e) + R(7, ¢, \(€))
¢ D2
0

€ HBE’]‘eAST)\o + e Bivy + BieXT\(e) + e~ Biv(e) + R(,¢, A(s))H

To find the asymptotics of the integral in (2.8), we apply the method of an auxiliary parameter,
which was described in [12,17]. Decompose the integral from (2.8) into the sum of two terms

Oc

0 0

SF

CE
where p is a small auxiliary parameter. Let u = €? for ¢ € (0,1). Then, / - = 0, and
n

equation (2.8) yields
Il (57 M)

K * T * T
1 / . BeAiT\g + e %< By + Bie 0T A(e) + e %< Biv(e) + R(7,¢, \(€))
¢ D2

dr = Q0.
€ HBgeAST)\o + e Biuy + BieAT\(e) + e~ Biv(e) + R(r,¢, A(s))H

0

Here, O is an asymptotic zero with respect to the power asymptotic sequence; i.e., O = o(e?)
Vy >0 (e — 0).
Consider the asymptotic expansion of the integral I;(e, ). Changing n = 7 /e, we obtain

ByXo + e B3 + R(n,,A(e), v(¢))

N dn = 0, (2.9)
HB(’;)\O + e~ B3y + R(n, e, (&), 1/(5))”

n/e
Ii(e,p) = /6_0"732
0

where

R(n,e,\e),v(e)) = B; (6A55’7 - I) Ao + Bie 0\ (e) + e Bju(e) + R(en, e, A(e)).

Define 6() = ||(Me)T,v(e)T,9(e))T|l. Then, R(n,e,A(e),v(e)) = O(en+68(c)+e) as e — 0
for n € [0, u/e].
We will seek a solution of system (2.3) among the vectors (A(e)”, v(e)T,9(¢))T for which
i) =0 (e), e — +0. (2.10)
First, we find 1. In the limit as € — 0, equality (2.9) yields

“+oo

- B\ + e~ "By,
= anp, 0 270 g 2.11
0 /e 21IBxXo + e Biwg| " (2.11)
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ASYMPTOTIC REPRESENTATION OF SOLUTION 527

or
oo —an g oo —2am d
€ n € n
0= ByBg Ao + / BsB3v.
0/ B Ao + e~ Byup|| 207 IBido + e~ Biug|| 2720
Therefore, there exists o > 0 such that
BQB*VO = —O’BQB*)\(). 2.12
2 0

In particular, multiplying (2.12) scalarly by the vector vy, we get
|Bswol|* = —a(B2Bg Ao, vo).- (2.13)
On the other hand, multiplying scalarly equality (2.11) by the vector —awvy, we derive

“+oo

B*\ —an gx — e B*
0= /< 0do e I Biw, —ac HB0) g, (2.14)
1BiAo + e=on Biwg |

Changing x = ||BjA\o + 6_0”735‘1/0\\2 in the integral on the left-hand side of (2.14), we come to the
relation
0= [1BsAoll = 1BoAo + Bawoll, (2.15)

which implies
0 = 2(ByBio. 1) + | Biwol” (2.16)
Thus, from relations (2.13) and (2.16), we find that

* * 2 * *
IBgoll” = —2(B2Bj Ao, vo) = , 1Boo + Bavol - (2.17)
It follows from (2.17) that either
B;I/() = 0, BQBS)\O =0 (218)

or
o=2 | Biwl| 0. (2.19)

Note that equality (2.12) has the form By (B5vy + 0B§A\g) = 0. If B3y + 0B\ = 0, then we have
case (2.19) and Bivg = —2Bj\g. Then, the function BiA\g+ e~ “"Bsvy = BjAo(1 —2e~*") vanishes
for e =1/2. In what follows, we will consider the case when

BS)\O + e_omB;I/Q #0 (2.20)

for any n > 0. A sufficient condition for (2.20) is Bjvg = 0; i.e., in view of (2.18) and Condition 1,
we have BayBiAo = 0 and vy = 0. Note that Bj\g # 0 in view of assumption (1.12). Equation (2.9)

now takes the form
w/e ~

[eommy  FwXOAD) g

s HBS)\O + ﬁ(n,s,A(s),u(s))H

We have

[B3a0 + & = (1521?2850, B+ 1RIF) 7 = I 20l (1 fg;;ﬁ o (IRI) ).
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528 DANILIN, KOVRIZHNYKH

where

R(n,e,\e),v(e)) = B (eASﬂ7 - 1) No + BieA8MA(e) + e Biv(e)
— " ByAjy(al +245) 7 45" (M + A(9))
1
= en BL Ao + BINE) + e " Biu(e) — sz B3 AL Ao + R(n, 2, A\(e)).

1
Here, R(n,£,\(c)) = O (e?n® +end + €6 + &2) as e — 0 for n € [0, p/e]. Then,

n/e ) n/e ) w/e
(e ) ~ ;B2B§A3>\0 / ne i+ | BaBiAE) / dn+ L BaBiu(e) / e~ gy
0 0 0
w/e w/e
—a2ﬁB2Bz 12140)\0/6 77611774‘632/6 "R(n, e, A(€)) dn,
0 0
2
where 8 = || B{Ao|| and R(n,¢,A(¢)) = O (e2n* 4 6 + 7).
Thus,
IS *A* 1 * 1 % € *A* A* . 2 2
Q%BQBO “Xo + aﬁB2BO)\(5) + 2aﬁBgBQU(€) — a3ﬁ3232 12 AGN = O (6% +67)

or, since B} = B} + a 1B} A},

1 1
ByBy
Oéﬁ 2 OA(E) + 20&6

Hence, in accordance with Condition 1 and equality (2.10), we have

BoBi Af g + ByBiu(e) = O (2 +6%).

€
a?3

2¢e
v(e) =" (B2B3) ' By Bf Ajho — 2(B2B3) ' BaBiA(e) + O (£7) . (2.21)

Consider equation (2.3a) and, in view of relation (2.6), write it in the form

G D7) (M)A + 7T By
0=y, +2+ / dr, (2.22)

‘ A:(T)Ae + e %< Biu,

where A.(7) := e0"By — £ e Ag(al +eAg) L A12Bs and D.(7) is defined by (2.4).

Assume that vectors A(¢) and v(e) are such that A*(7)(Ag + A(€)) 4+ e~ %< Biv(e) # 0 for any
T E [0,91], ©1 > Oy.

In view of (1.12), the expansion of the integrand in (2.22) has singularities for 7 = 7, and, in a
sufficiently small neighborhood of zero, we must take into account the influence of the exponents,
which have the boundary-layer character. Decompose the integral in (2.22) into the sum of two
terms containing the points 7 =0 and 7 = 7:

@g T1 @s

/.:/.+/-::J1(€)+J2(€)7

0 0 1
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ASYMPTOTIC REPRESENTATION OF SOLUTION 529

where 0 < 71 < 7. Let us investigate the asymptotic representation of the integrals Ji(¢) and Ja(e)
by the method of an auxiliary parameter, which was described in [12,13,17]. Let

T1 15 T1
Ji(e) z/-z/-+/- =t Jia(e, 1) + Ji2(e, 1),
0 0 o
where p is a small auxiliary parameter: p = &7 for ¢ € (0,1). Changing n = 7/¢ in the
integral J; 1(¢), we obtain
1
Jia(e, ) = Fle,6,n) + O (7). (2.23)

Here and elsewhere, we denote by ]1-' (e,0, ;1) sums of a finite number of terms of the form o (e)u® In® 1
or 1(0)u®In® u, where a® + b2 # 0; p(e) = O*(£7) for some v > 0; and ¢ (5) = O (J), which,
according to assumption (2.10), yields ¢1(6) = O (¢). In this case, the expression p(c) = O*(e7) as
e — 0 means that ¢(¢) = 0(¢7) Vo < 7 [13,17]. By the lemma from [17], terms of this form can be
neglected in the expansion of an integral by the method of an auxiliary parameter.

Note that, for p =€, 0 < g < 1, in view of (2.4), we have

71)5(7) (Ao + i) 7EAE<T>A:<T>AE o (2.2)

‘ Ax(T)Ae +€_QZB§VEH [AZ(T)Ac |l

For the integral Ji 2(e, 1), using representation (2.24), we obtain

I

T1

7 C()(T))\O dT—l—/Ll(T;E’)\(E))

2
dr 0, O (), — 0, .
/i) Vi TETEAMTOED, 0 2

Jia(e, 1) =

where

Ll(T; g, )\(E)) = ¢(T) (CQ(T))\(E) + EC1 (T))\o) — ;(Cl (T))\Q, )\0> CO(T))\O — <C0(T))\0, )\(E)> Co(T))\Q,

1 ,
Ci(r) == » €07 (AgA19 By B + BoBj A5y Af) /o7,

Note that ¢(7) > 0 for 7 € [0, 71| because of conditions (1.12).
In view of the lemma from [13], for = €9, 0 < ¢ < 1, relations (2.23) and (2.25) yield

ne) = [0 gy [ETEAED 46 (2 (2.26)
S e T e
Further, let
O¢ T—H T+p [CE
TJ2(€) :/ = / -+ / -+ / C = J2,1(€7M)+J2,2(€7M)+J2,3(€7M)7
T1 T1 T— T+0

where p is a new small auxiliary parameter: u = €4 for g € (0,1).

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 281 Suppl. 1 2013
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According to conditions (1.12), we have (1) = (7 — 7)%||Bie 0™ Aio|? (1 + (7 — 7)1 (7)),
where (1) € C*°[1,01]. Using assumption (1.13), we derive

1Bge o™ Aghol|* = [le®oT BoBge T AgAo||* = [Q Aol

Introduce the notation
Ao = QA o = 1 AT By B3 A%, 40T A\ Ae)=Q e
0 0 A0, 0 g€ 0baAjg € 0 A0, (€) (e),

Me) —ho = 0(e) + U)o, Pe) LNy, () €R. (2.27)
1 T—T

1 ~ 1
Here, p € QR” and Ay € QR". Consequently, = ~ 4+
Vi) =il =

19(T), where

¢2(T) S COO[Tl, @1]
Let us first consider the integral Jy;(e, ). By analogy with [13], we apply the integral
regularization method and obtain

T

[ Coa, [ e X = Aallatrie Xe)

J: J ) = dr
9.1(e, 1) J e J JE3(r)
+ [ xo]? })(5) T! (\T/;?»(Z)j dr + }-(e, 5, 1) + O (7)), e —0, (2.28)

for pu =€, q € (0,1). Here, Az(L1(7;¢,A(€))) is the segment of the Taylor series of the function
Ly(7;€,\(€)) with respect to 7 at the point 7 that contains powers (7 — 7)¢ for i < 2:

Az(L1(73,A(€)))

~ 1 ~ ~ ~ 1 ~ ~ o~ ~ ~ 1
= (1 =77 (IR0l (=) + [Pl 1e) %0 = (Ao, 2(£)) A0 = 1E)(Pos Do)ho) = (7 = 7)2[Ro 2 ().
For the integral Js 3(e, 1), we have

Co(@0)Aa 7°L1<r; EME)) — As(Li (732, M(2)))

V¥ (60) VU3 ()

O
Co(T) Mo

dr
S V()

To3(e 1) = dr +0(c)

(S
+ [ Xol1? /l)(s) / (\T/;gzjj dr + ,%(E, 6, p) + 0 (), e —0. (2.29)

Further, we seek a solution satisfying for sufficiently small € the conditions

T+p

1 1 1
p(e) = ole), p(e) # 0, e = o(||p(e)]|) for all v > 0. (2.30)
Under these conditions, we find the asymptotic representation of the integral J (e, i) similarly
to [13]:
A 2 2/ A
o 200 2l

4
- ~ . + Fle,d, 1) + (9*(52) ) e — 0. (2.31)
Aol 12l 1p(e)]

J272(€, ,u) = 2[(6)
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ASYMPTOTIC REPRESENTATION OF SOLUTION 531

Using relations (2.28), (2.31), and (2.29), we obtain

O
. 00(7'))\0 - m L1 ’7’ g, )\ )) - 2lnvy 1
PO o T K/ +/> N R
~ 1
Co(©0) Ao Ao 20(e) 2H)\OH
¥ 21(e) - + Fle.b. 1) + O 2.32
e V¥(80) © Aol ||>\o|| 1P()]| &8+ ). 252

8
By the lemma from [17], the term F(e,d, 1) can be neglected.

3. FINDING THE FIRST TERMS OF THE ASYMPTOTICS OF THE SOLUTION

Substituting relations (2.26) and (2.32) into (2.22) and using identity (1.11), we derive

_ ¢ 4090 4 1 |:< >L1T€)‘ ))d 21~n'71 :|
0 N 1229 + im / / S T+ ol P(e)

(3.1)
~ 1
Ao 2p(e) 2[[ Xl Co(©0) Mo 4.0 .
21 ~ ~ In 9 Age0™0 O
H2E [ Aol ! [ Aol : 1P@)| (€)<\/¢(@0) T >+ ()
Nop(e) = 0.

- 2 2

The vector A(¢) can be represented in the form )\(E) = M) + p(g), where Qp(¢) = 0. Further,
~ ~ 2 ~ 1 ~

Ae) = Me) — eXo + P(g) + eXo = P(e) + 1(e) Ao + P(s) + e)g. Consider the new unknown vector

~ 2
p(e) := A(e) — e\g and represent p(e) in the form p(e) := Qp(e) + P(¢). By analogy with [11], we
can prove the following lemma.

Lemma 2. There exists g > 0 such that

AX(T) (o + p(e) +eXo) + e Biv(e) £ 0
for all 7 € [0,04], ©1 > B¢, 0 < e < &g, and p(e) satisfying the conditions

(o, Qp(2)) < BIMlllQe(e), 0<B <1, (3.22)
Qo(e) = o), 7 = ollQu(E)),  He) = O(IQpE)), —+0 Vy>0.  (3.2D)

In what follows, we will consider the values of p that satisfy conditions (3.2). Note that these

conditions do not contradict conditions (2.30), which were introduced earlier, and it follows from

1 ~ 2
(3.2) that [|Qp(e)|| # 0. According to the adopted notation, p(e) = p(g) + l(e)Ag + P(g). Then,
equation (3.1) takes the form

o 10() — (Col(T)0, p(€)) Co(r) Ao~ 1
evl_wg%[( / / ) Ty O||>\0||d7+21nw(€)]
T+ (3.3)
2[| Aol Cv(O0) Ao 400
21 )\ 2 s Apeoeo A O*
+20(e) 3o + 2P(e) In A <5><M@0) + >|| ol + 0%(2),
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where

3
v = ol ey o
o

5 dr. (3.4)
V()
Note that the integrand in (3.4) is bounded on [0, ©g].

An additional equation equivalent to the condition that equation (2.1) is homogeneous with
respect to the vector r. can be specified by analogy with [11] so that the matrix of the linear part

— ol 70¢(T)(Cl (1) Ao + Co(T)X0) — 2{C1(T) 0, Ao) Co (7)Ao — {Co(T) Ao, Ao) Co(T) Ao
0

of system (3.3) remains symmetric:

3 [ Co(©®0)Ao | age0 4 0 " B
||)\0||< (00 + 7070 Agy ) p(e) = 0.

XOLP(E» and p(e) = —1(e)ho = - (XO,B(E»X
13ol2 p(e) = Qple) = U(e)ro = @p(e) o2

for finding the first approximations p1, ¥1, and vy of the unknowns p, 9, and v:

Note that [(e) = ( O Write the system

EVl(l) Bi1 Bi2 Bis Pgl) Hii 00 pgl)
V@ | =| Biy B B || pf2 |+ 0 00 || @ [In (7?1)), (3.5)
9(p
0 Bis Bjy 0 9 0 0 0 9 !
vi1(e) = —2(ByB3) ' ByBf p1(e) + £51. (3.6)

Here, pgl) € R", /7&2) € R, o = 4| ho|1%,

1)
P B Co(©p)IN ~
m@=< 1>, ( B):(O(“0+&@Mwﬂwm

o2 B ) =\ uion)

Bi1 B2 o T—y 6 D(T)Co(T)p1(e) — (Co(T) Ao, p1(€)) Co(T) Ao~
( Bi, Bao >p1 _'Yli’n?ro [< 0/ ’ / > V3 (T) [ XolldT

T+

)

cmm@ﬁg]+g%mwwo

+2111’Y<Q,01(5)— ~ <
| Ao |I? | Ao ||?

Hiu 0 Mo, p1(e)) Ao
Bi1 = Bij, B = B3, < >pl =Qpi(e)— " ;
0 0 | Aol|?

(X07P1(€)>2 1

9(p") = pi(E)Qp1(e) - Hand GO (37)

2 _
S = —a(BgB;)—lBgB;‘AgAO — 2(ByB3) ' By Bg \o.
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Note that g(pgl)) = 0 if and only if pgl) || Pr, Xo; here, the vector Pr, \o is obtained from the first r

coordinates of Xo.
Similarly to [11], we can prove that system (3.5), (3.6) has a unique solution

P1 . . -1 Vi
< . > — cRyVi + Ry X d1ag<€ . (E))R?,Vl, (3.8)
v = eR4Vi + €81 + Rs x diag(e In~! V[j(ig))nﬁvl (3.9)

for all sufficiently small €. The function W (e) is a solution of some scalar equation such that
~eKy ase— 40,

e =0o(W(e)) ase— +0 forall y > 0.

Here, Ko > 0; ~; (i = 1,7 — 1) are constants depending only on the data of the problem; and
Ry (kK = 1,6) are known constant matrices of size (n +1) xn, (n+1) x (r — 1), (r — 1) x n,
m X mn, mx (r—1), and (r — 1) x n, respectively. Class (3.8), (3.9) contains a solution satisfying

conditions (3.2) for some 3 € (0,1). For example, if the vector V; (3.4) satisfies the relations
QVi=Vi,  XNVi=0, (3.10)

then this solution of first approximation system (3.5), (3.6) takes the form

— P1 _ . -1 i
wy = < 8 > =Ry X d1ag<€ln W(E)>R3V1’ (3.11)
v1 =¢e81 + Rs X diag(s In—! V[/?/(ig))Rﬁ‘/i. (3.12)

The validity of conditions (3.10) is provided by an appropriate choice of the problem’s data, i.e., the

initial vector z° and the matrix A;5. Note that each component of the vector v := (plT, 91, VlT)T

is a rational function of ¢ and In(1/W(¢e)); moreover, |wi]| = O (W(e)) and ||v1| = O (¢).
Introducing the corresponding notation, we write system (3.3), (2.21) in the form

e ~ ~ Yo x( 2
eV=Bp+Hpln __ +0O%e%),
PHHPI G G+ OTE)

v=">bp+eS +0 (),

where 7 := (pT,9)" and § (p) = p*H p. Note that g (p) = g(pV)) from (3.7).
Let p = p1 + p2, 9 = 91 + U9, and v = v1 + vo, where p1, U1, and vy are the components of
solution (3.11), (3.12) of system (3.5), (3.6). Define w = (p2, ¥92) and v := (pI, 9o, vI)T. Tt

follows from the results of [11] that g(pgl)) = W?2(e) (3.7). Then,

_ 1 2wiHw [|wl|?
1,1y — _aw
Ing (p*"/) =1In W2(e) W2(e) + 0O <W2(z—:) .
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Since vy is a solution of the first approximation system, we obtain the following system of equations
for w and vy:

wile) Hw wl|? .
0=Bw+Hwln WZCEE) —2Hwi(e) 1‘25/52)(5) —|—(9<‘|}’V(H€)>—|—O (52), (3.13)
vo =bps + O (62) . (3.14)

By the linear transformations described in [11], we come to a system equivalent to (3.13), (3.14):
v = F(e,v), (3.15)

where )
F(e,v)=0 (IU[(;H > + O*(Ez) =o(1) ||wl| + (’)*(52) =o(e!), -0,
()

forv=0 (5”7) and any 0 < 7 < 1. Note that the mapping F(e,v) is continuous in v for any
e > 0. Let us find a compact convex set that contains its own image under F'(¢,v). Then, by the
Schauder—Tychonoff theorem [18, p. 628], F'(¢,v) will have a fixed point in this set. Consider the
ball B [0, Ke'*7] of radius Ke'™ in the space R™" ! centered at zero. Let ||v|| < Ke'™. Then,
there exists ¢ such that |[F(e,v)|| < Kel*7 for all € € (0, £); hence, equation (3.15) has a solution
v=0 (") for0<y<lase—0.

Note that any other solution of system (3.15) has the same asymptotic estimate v = O (EH'Y).
Indeed, it follows from equation (3.15) that

v=o( M)+

or

for some constant K > 0. Let us solve this inequality with respect to ||v||. Using the assumption
[v]| = o([|v1]]), we obtain |v]| = O*(?) = O (¢!*7), € — 0. Thus, we have the following theorem.

Theorem. Suppose that Conditions 1-5 and relations (1.12) and (3.10) are satisfied. Then,
the optimal time O, and the wvector of initial conditions of the adjoint system have asymptotic
representation Ry + Ri(e,In(1/W(g)) + O (') for 0 < v < 1 as ¢ — 0, where Ry is a rational
vector function of its arguments and Ry(g,In(1/W(e)) = O (¢).
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