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1. This work is related to the theory of guaranteeing
position control (see [1, 2]) and relies on the results of
[3–5]. We examine the properties of an optimal guar�
anteed result and describe methods for constructing an
optimal control strategy in the case when an unobserv�
able dynamic disturbance acting on the control system
is subject to a priori functional restrictions.

Control problems with functional restrictions
imposed on the input dynamic disturbance have
numerous interpretations and have been studied in
various formalizations. In [6, 7] the properties of lin�
ear control systems were compared in the case of dis�
turbances specified by previously unknown but fixed
functions of time (programmed disturbances), distur�
bances generated by continuous feedback, and distur�
bances formed by upper semicontinuous set�valued
position strategies. In [5], assuming that the distur�
bances with a priori restrictions imposed on their val�
ues are contained in a previously unknown L2�com�
pact set, it was shown that the optimal guaranteed
result achieved in the class of position strategies with
full memory is equal to that achieved in the class of
quasi�strategies, i.e., nonanticipating program
responses to disturbance realizations [2].

In this work, the problem is studied in the formula�
tion proposed in [5]. The result obtained is stronger
than that of [5] concerning the unimprovability of
position strategies with full memory in the case of a
continuous cost functional.

2. Consider a control system governed by the differ�
ential equation

(1)x· t( ) f t x t( ) u t( ) v t( ), , ,( )=

in �n on a time interval T  [t0, ϑ] (t0 < ϑ) with the ini�

tial condition x(t0) = x0. Here,  denotes “being equal
by definition”; x0 ∈ �n; u(·) and v(·) are an admissible
control and an admissible disturbance defined as arbi�
trary Borel measurable functions from T to given com�
pact sets � ⊂ �p and � ⊂ �q, respectively; and f(·):
T × �n × � × � � �n is a continuous function satis�
fying (with respect to the second variable) the sublin�
ear growth condition and a local Lipschitz condition
with growth and Lipschitz constants that are uniform
with respect to the other variables (see [8, Section II.4]).
The sets of all admissible controls and all admissible
disturbances are denoted by � and �, respectively.

Let x(·, x0, u(·), v(·)) denote the motion of the sys�
tem from the state x0 ∈ G0 under the action of an
admissible control u(·) and an admissible disturbance
v(·), i.e., the solution in the sense of Carathéodory
on T of Eq. (1) with the initial condition x(t0) = x0 (the
above assumptions ensure the existence and unique�
ness of this motion).

As is customary (see [1]), we assume that the con�
troller influences the motion from the initial position
x0 by generating admissible control values. Let γ(·) be a
continuous functional on C(T, �n) (cost functional).
The goal of the controller is to minimize the largest
(worst) of the cost functional values occurring when
the system is driven by the generated admissible con�
trol and any admissible disturbance.

Current control values are generated discretely as
based on the current history of the motion and the
control. As usual (see [1]), we assume that the current
disturbance values cannot be observed in the control
process.

The above methods for generating current admissi�
ble control values are formalized as position strategies
with full memory. Let us give the rigorous definition
(see [5]). The partition (of the time interval T) is any

finite set Δ   from T such that t0 = τ0 < τ1 < … <

τm = ϑ. Let d(Δ)  τi – τi – 1) (here and below,

=
Δ

=
Δ

=
Δ

τi( )i 0=
m

=
Δ
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i, …, j denotes the following segment of the set of non�
negative integers: {i, i + 1, …, j}, i, j ∈ � ∪ {0}). The set
of all partitions is denoted by D. The feedback with full

memory on a partition Δ =  is any family U 

(Ui(·) , where Ui(·): C([t0, τi], �n) � � (i ∈ 0, …,
(m – 1)). The position strategy with full memory is any
family U = (UΔ)Δ∈D, where, for each Δ ∈ D, UΔ is feed�
back with full memory on the partition Δ.

The motion from the state x0 ∈ �n generated by the

full�memory feedback U = (Ui(·)  on Δ and by an
admissible disturbance v(·) is a function x(·) = x(·, x0,
Δ, U, v(·)) defined by the condition x(·) = x(·, x0, u(·),
v(·)), u(t) = Ui(x(· ) for all t ∈ (τi, τi + 1, i ∈ 0, ….,

(m – 1). Here and below, z(·)τ is the restriction to [t0, τ]
(τ ∈ T) of a function z(·) defined on an interval that
belongs to T and contains [t0, τ].

For each nonempty V ⊂ �, each x0 ∈ �n, and each
full�memory position strategy U = (UΔ)Δ ∈ D, let X(x0,
U, V) denote the set of all functions x(·) ∈ C(T, �n),
each being the limit in C(T, �n) of the sequence

(x(·, x0k, Δk, , vk(·)  for some x0k ∈ �n, Δk ∈ D,
vk(·) ∈ V (k ∈ �) such that x0k → x0 and d(Δk) → 0.

In what follows, comp(�) denotes the set of all sub�
sets of � that are compact in L2(T, Rq). For each x0 ∈
�n and each full�memory position strategy U, we
define

(2)

Let � be the set of all full�memory position strategies.
Given x0 ∈ �n, the quantities

(3)

are called the optimal guaranteed results in the class of
full�memory position strategies in the initial state x0
with no functional restrictions on the disturbances and
with L2�compact restrictions on the disturbances,
respectively.

A strategy U∗ ∈ � is said to be optimal in the initial
state x0 ∈ �n with no functional restrictions on the dis�
turbances and with L2�compact restrictions on the dis�
turbances if

(4)

respectively.

τi( )i 0=
m

=
Δ

)i 0=
m 1–

)i 0=
m 1–

)τi

U
Δk )k 1=

∞

� x0 U,( ) X x0 U, ,( ),=

�c x0 U,( ) X x0 U V, ,( ).
V comp �( )∈

∪=

Δ

Δ

�

Γ x0( ) γ x ·( )( ),
x ·( ) � x0 U,( )∈

sup
U �∈

inf=

Γc x0( ) γ x ·( )( )
x ·( ) �c x0 U,( )∈

sup
U �∈

inf=

Δ

Δ

γ x ·( )( )
x ·( ) � x0 U*,( )∈

sup Γ x0( ),=

γ x ·( )( )
x ·( ) �c x0 U*,( )∈

sup Γc x0( ),=

Following [2, p. 24], the quasi�strategy is any map�
ping α(·): � � � such that α(v(·))τ = α(v'(·))τ for all
τ ∈ T and v(·), v'(·) ∈ � satisfying v(·)τ = v'(·)τ. For
any x0 ∈ �n and any quasi�strategy α(·), the elements
of the set

are the motions from x0 generated by α(·). Let Q
denote the set of all quasi�strategies. The optimal
guaranteed result in the initial state x0 ∈ �n in the class
of quasi�strategies (with no functional restrictions on
disturbances) is defined as

.

In a similar manner, we can define the optimal guaran�
teed result in the class of quasi�strategies with L2�com�
pact restrictions on disturbances. However, these defi�
nitions imply that the defined quantities are equal to
each other: from the point of view of the optimal guar�
anteed result, quasi�strategies are insensitive to func�
tional restrictions on disturbances.

Theorem 1. For every x0 ∈ �n,

(5)

It follows from the results of [2] that both inequali�
ties in (5) become equalities for every x0 ∈ �n if the
saddle point condition holds, namely, if

(6)

for all t ∈ T and l, x ∈ �n. Here and below, 〈·, ·〉 denotes
the scalar product in �n. Generally speaking, the last
condition is not assumed to hold. In this situation,
some of the inequalities in (5) can be strict. Examples
of situations in which the first and last elements in (5)
differ are well known in the theory of guaranteeing
control (see [2, Chapter VI, Section 1]).

For a cost functional γ that is uniformly (L1, δ)�
continuous on the set of all motions of system (1), an
example with the second inequality in (5) being strict
was given in [5]. For a continuous functional, an
example of a similar inequality is presented at the end
of this paper.

3. Since the least of the optimal guaranteed results
written in (5) is the optimal guaranteed result in the
class of quasi�strategies, of special interest are those
functional restrictions on disturbances (L2�compact
restrictions in this work) and those conditions under
which the corresponding optimal guaranteed result in
the class of full�memory position strategies coincides
with that in the class of quasi�strategies. In this case,
the class of full�memory position strategies is unim�
provable (in the given initial state) in the sense that the
use of any past and current values of admissible distur�
bances in the generation of an admissible control does
not improve the guaranteed result.

� x0 α ·( ),( ) x · x0 α v ·( )( ) v ·( ), , ,( ) v ·( ) �∈{ }=Δ

Γq x0( ) γ x ·( )( )
x ·( ) � x0 α ·( ),( )∈

sup
α ·( ) Q∈

inf=Δ

Γq x0( ) Γc x0( ) Γ x0( ).≤ ≤

l f t x u v, , ,( ),〈 〉
v �∈

max
u �∈

min

=  
u �∈

min
v �∈

max l f t x u v, , ,( ),〈 〉
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According to [5], a sufficient condition for the
unimprovability of the class of position strategies with
memory under L2�compact restrictions on distur�
bances is that the mapping v � f(t, x, u, v) is one�to�
one for all (t, x, u) ∈ T × �n × �. The goal of this paper
is to establish a more general sufficient condition and
present the corresponding strategy from �.

We begin with defining a special strategy U∗ ∈ �.
Its construction relies on sets of motions generated by
“almost optimal” quasi�strategies. Specifically, for
every x0 ∈ �n and every ε > 0, let

where cl denotes the closure of a set in C(T, �n). For

an arbitrary τ ∈ T, we define 	(x0)τ  {x(·)τ| x(·) ∈
	(x0)}, and, for every y(·) ∈ C([t0, τ], �n), we fix the
element w(·|τ, y(·)) ∈ 	(y(t0))τ nearest to y(·) in
C([t0, τ], �n).

Now let us define the position strategy U∗ of inter�

est. The feedback  = ( (·)  is defined induc�

tively on the partition Δ =  with a constant step.

Given some  ∈ �, for every x0(·) ∈ C([t0, τ0], �n)

(recall that τ0 = t0), we set (x0(·)) = . Addition�

ally, we introduce a constant admissible control (·)

with the value equal to .

For any x1(·) ∈ C([t0, τ1], �n), before specifying

(x1(·)) ∈ �, we define the auxiliary vector  =

(x1(·), u0) ∈ � on the time interval [t0, τ1]. This vec�
tor approximates the values of the unobservable distur�
bance occurring in the formation of the motion x1(·) of
the system on the interval [τ0, τ1] and is found by solv�
ing a suitable inverse dynamics problem (see [3, 4]).
Additionally, we specify a vector y0(τ0) ∈ �n used as an
initial state of the auxiliary motion y0(·) modeling the
optimal behavior of system (1) under the auxiliary dis�

turbance  on interval [τ0, τ1]. The value (x1(·))
plays the role of an admissible control on [τ1, τ2]
formed as based on the memory x1(·) and is chosen to
be the optimal response (in the formalism of counter�

strategies [1]) to the disturbance value  in the aux�
iliary motion y0(·). Specifically, we set

Qε x0( ) α ·( ) Q γ x ·( )( )
x ·( ) X x0 α ·( ),( )∈

sup∈ Γq x0( ) ε },+≤{=Δ

	 x0( ) cl � x0 α ·( ),( ),
α ·( ) Q

ε
x0( )∈

∪
ε 0>

∩=Δ

=
Δ

U*
Δ U*i

Δ
)i 0=

m 1–

τi( )i 0=
m

u0

U*0
Δ u0

u0

u0

U*1
Δ

v0
Δ

v0
Δ

v0
Δ

U*1
Δ

v0
Δ

v0
Δ

f τ0 x1 τ0( ) u0 v, , ,( )
x1 τ1( ) x1 τ0( )–

τ1 τ0–
�����������������������������– ,

v �∈

minarg∈

y0 τ0( ) x1 t0( ),=Δ

Here and below, |·| denotes the Euclidean norm.
Assume that, for a certain i ∈ 1, …, (m – 1), the values

(xk(·)) ∈ � are determined for all k ∈ 0, …, i and
xk(·) ∈ C([t0, τk], �n). For any xi + 1(·) ∈ C([t0, τi], �

n),

before specifying (xi + 1(·)) ∈ �n, we specify the

vectors   (xi + 1(·), ui(·)) ∈ � and yi(τi) ∈ �n

(which have the same meaning as their counterparts
defined above in the case i = 1). Let

(7)

(8)

The feedback  = ( (·)  on a uniform par�
tition Δ has been defined. The definition of the feed�

back  on an arbitrary partition Δ differs by insignif�
icant technical details. The full�memory position

strategy of interest is U∗  ( )Δ ∈ D.

For (t, x) ∈ T × �n and u ∈ �, we introduce the
quotient set �/  of a set � generated by the equiv�

alence relation :

Theorem 2. Suppose that, for system (1), the quotient
sets �/  are independent of u ∈ �:

(9)

Then, for any x0 ∈ �n, we have Γq(x0) = Γc(x0)
and the strategy U∗ is optimal in the initial state x0 under
L2�compact restrictions on disturbances.

An example of control system (1) satisfying condi�
tion (9) is the system

(10)

where f(·): T × �n × � � �n, h(·): T × �n × � � �m,
m ∈ �, g(·) maps T × �n × � to a normed space of

U*1
Δ x1 ·( )( )

∈ y0 τ0( ) w τ0 τ0 y0 τ0( ),( ), f τ0 y0 τ0( ) u v0
Δ

, , ,( )–〈 〉 .
u �∈

minarg

U*k
Δ

U*i 1+
Δ

vi
Δ

=
Δ

vi
Δ

vi
Δ

f τi xi 1+ τi( ) U*i
Δ xi 1+ ·( )τi

( ) v, , ,( ) ��
v �∈

minarg∈

–
xi 1+ τi 1+( ) xi 1+ τi( )–

τi 1+ τi–
���������������������������������������� ,

yi τi( ) = yi 1– τi 1–( ) f t yi t( ) U*i
Δ xi 1+ ·( )τi

( ), vi
Δ

, ,( ) t,d

τi 1–

τi

∫+

U*i 1+
Δ xi 1+ ·( )( )

∈ yi τi( ) w τi τi yi ·( ),( ), f τi yi τi( ) u vi
Δ

, , ,( )–〈 〉 .
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minarg

U*
Δ U*i

Δ
)i 0=

m 1–

U*
Δ

=
Δ U*

Δ

~
t x u, ,( )

~
t x u, ,( )

v1 ~ v2( ) f t x u v1, , ,( ) f t x u v2, , ,( )=( ),⇔

v1 v2, �.∈
(t, x, u)

~
t x u, ,( )

�/ ~ �/ ~ for all u u', �,∈=

t x,( ) T �
n
.×∈

(t, x, u) (t, x, u')

x· t( ) f t x t( ) u t( ), ,( )=

+ g t x t( ) u t( ), ,( )h t x t( ) v t( ), ,( ),
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matrices, and the kernel of the linear operator g(t, x, u):
�m � �n is independent of u ∈ � for all (t, x) ∈ T × �n.

4. In some problems, the above construction of a
strategy with full memory leads to efficient computa�
tional procedures. When system (8) is given by the
equation

(11)

and the performance index has the form γ(x(·)) 
σ(x(ϑ)), where σ(·): �n � � is a convex and locally
Lipschitz function, the form of the strategy U∗ can be

simplified if the regularity condition holds (see [1,
Section 72; 2, Chapter III]). Specifically, let Φ(ϑ, s)
be the fundamental matrix of system (11), σ*(·): �n � �
be the adjoint of the function σ(·), and dom(σ*(·)) ⊂ �n

be the effective set of σ*(·). For arbitrary (τ, l) ∈ T × �n,
we introduce

and define a counterstrategy [1, Section 86] u0(·): T ×
�n × � � � by the conditions

Theorem 3. If condition (9) holds for system (11) and
the function ρ(τ, ·): dom(σ*(·)) � � is concave for all
τ ∈ T, then Γq(x0) = Γc(x0) for any x0 ∈ �n and the strategy

U∗∗ given by relations (7), (8), and (xi + 1(·)) 

u0(τi, yi(τi), ) (Δ = (τi , i ∈ 1, …, (m – 1)) is opti�
mal in the initial state x0 under L2�compact restrictions
on the disturbances.

Note that the strategies U∗ and U∗∗ are universal;
i.e., they are independent of the initial state x0.

5. As an example, we consider the following control
system of form (10):

Let γ(x(·))  x2(1) (x(·) = (x1(·), x2(·)) ∈ C(T, �2)). It
can be verified that Γ((0, 0)) = 0.5 and the conditions
of Theorem 2 hold. At the same time, the right�hand
side of the system is not injective with respect to v2,
i.e., does not satisfy the conditions of Theorem 9.1 in
[5]. By applying Theorem 2, the optimal guaranteed
result under L2�compact restrictions on the distur�
bance can be easily obtained to be Γc((0, 0)) =
Γq((0, 0)) = –0.5. This example shows that the last
inequality in (5) can also be strict in the case when the
functional γ is continuous in C(T, �n).
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Translated by I. Ruzanova
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