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Abstract—The residual method, which is one of the standard regularization procedures for
ill-posed optimization problems, is applied to a convex programming problem. The connection
between this method and the regularized Lagrange function method is investigated in the case
of optimal correction of improper problems of convex programming. This approach allows one
to decrease the number of impropriety classes to be analyzed. Conditions are formulated and
convergence estimates of the method are established.
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INTRODUCTION

In [1, 2], methods for the correction of improper problems [3] of convex programming (CP)
based on the application of the Lagrange function regularized in both variables were considered.
The approach from [1] involved the preliminary reduction of the original problem to a similar
intermediate problem with the help of Tikhonov’s regularization method [4]. The method of quasi-
solutions [4], which is another widespread method for the regularization of ill-posed problems, was
used for the same purpose in [2]. In a number of cases, the use of additional regularizing procedures
allows one to decrease the number of possible impropriety types of CP problems to be analyzed.

Consider the CP problem
min{f0(x) : x ∈ X}, (1)

where X = {x : f(x) ≤ 0}, f(x) = [f1(x), . . . , fm(x)], and fi(x) (i = 0, 1, . . . ,m) are convex
functions differentiable on R

n. The problem that is (Lagrange) dual to (1) has the form

sup
λ≥0

inf
x

L(x, λ), (2)

where L(x, λ) = f0(x) + (λ, f(x)) is the Lagrange function for problem (1) with λ ∈ R
m
+ .

Problem (1) is called improper [3] if it does not satisfy the duality relation f∗ = L∗, where f∗

and L∗ are the optimal values of problems (1) and (2), respectively. The presence of the impropriety
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property depends to a large extent on the emptiness or nonemptiness of the admissible sets X in
problem (1) and Λ = {λ ∈ R

m
+ : inf

x
L(x, λ) > −∞} in problem (2). If X = ∅ and Λ �= ∅, then

(1) is called [3] an improper CP problem of the first kind; if X �= ∅ and Λ = ∅, then (1) is called
an improper CP problem of the second kind; finally, if X = ∅ and Λ = ∅, then (1) is called an
improper CP problem of the third kind.

Improper CP problems of the first kind, which are problems with conflicting constraints, occur
most often and have been studied well enough. The interest to inconsistent models is induced
both by the needs of the mathematical theory and by the necessity to numerically analyze applied
problems with conflicting conditions, first of all, industrial and economic problems. These problems
are characterized, on the one hand, by errors in modeling a complicated economic system and, on
the other hand, by contradictions inherent in a real object (resource shortage, existence of many
criteria, and so on).

Due to the frequency of occurrence of improper problems, it becomes important to develop
a theory and methods for their numerical approximation (correction), i.e., objective procedures
for the “resolution” of conflicting constraints, transformation of an improper model into a set of
solvable problems, and choice of an optimal correction among them.

In the present paper, we propose a method for the optimal correction of improper CP problems
based on the application of the regularized Lagrange function

Lσ(x, λ) = L(x, λ) + α ‖x‖2 − β ‖λ‖2,

where σ = [α, β] > 0 and ‖ · ‖ denotes the Euclidean norm. For the construction of an interme-
diate approximating problem, we use the residual method [4], which is a known method for the
regularization of ill-posed CP problems.

The application of the residual method to improper problems allows one to decrease the number
of impropriety types to be analyzed. First, we deduce estimates characterizing the convergence of
the residual method in the cases when the functions in the original problem are given exactly
and approximately. Then, we study the connection between finding saddle points of the function
Lσ(x, λ) and solving the approximating problem. Separately, we discuss the work of the proposed
correction method for CP problems with conflicting constraints and for problems with consistent
system of constraints.

1. THE RESIDUAL METHOD AND A CP PROBLEM

The residual method for the regularization of ill-posed CP problem (1) consists [4] in solving
the sequence of problems

min{‖x‖2 : x ∈ X ∩ Mδ}, (3)

where Mδ = {x : f0(x) ≤ δ} and δ is some numerical parameter. If (1) is a solvable CP problem
with optimal value f∗, then problem (3) has a unique solution x∗

δ for any δ ≥ f∗. Since Mδ1 ⊃ Mδ2

for δ1 ≥ δ2, we have ‖x∗
δ1
‖ ≤ ‖x∗

δ2
‖ ≤ . . . ≤ ‖x∗

0‖, where x∗
0 is the solution of (1) with minimal norm

(the normal solution). Thus, all the points x∗
δ lie in the compact set {x : ‖x‖ ≤ ‖x∗

0‖}, there exists
a limit point x̃ of the sequence {x∗

δ} as δ → f∗, x̃ ∈ X, f0(x̃) = f∗, and ‖x̃‖ ≤ ‖x∗
0‖. It follows

from the uniqueness of x∗
0 that x̃ = x∗

0 and lim
δ→f∗

x∗
δ = x∗

0.

To establish estimates for the convergence of the method, let us reduce problem (3) to the close
problem of minimizing a quadratic penalty function

min Fδ(x, r), (4)
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where Fδ(x, r) = ‖x‖2 +
∑m

i=1 rif
+
i

2(x) + r0

(

f0(x) − δ
)+2

and r = [r0, r1, . . . , rm] > 0.
From the theory of the penalty function method, it is known [5, Theorem 25.3] that, under rather

weak conditions on problem (3), the solutions x∗
δ and x̃r,δ of problems (3) and (4), respectively, are

connected by the estimate ‖x̃r,δ − x∗
δ‖ ≤ C(1/

√
r̄), where C is a constant and r = min

0≤i≤m
ri. Let us

establish a number of relations between solutions of problems (1) and (4).

Theorem 1. Suppose that problem (1) is solvable and satisfies Slater’s condition: there exists
a point x0 ∈ X such that f(x0) < 0. Then, for any r > 0 and δ ≥ f∗, the solution x̃r,δ of
problem (4) satisfies the inequalities

f+
i (x̃r,δ) ≤

‖x∗
0‖

2
√

ri
, i = 1,m; (5)

(f0(x̃r,δ) − δ)+ ≤ ‖x∗
0‖

2
√

r0
; (6)

|f0(x̃r,δ) − f∗| ≤ max
{

‖x∗
0‖
2

m
∑

i=1

λ∗
i√
ri

,
‖x∗

0‖
2
√

r0
+ �

}

, (7)

where x∗
0 is the normal solution of (1), f∗ = f0(x∗

0), λ∗ = [λ∗
1, . . . , λ

∗
m] is the vector of Lagrange

multipliers corresponding to x∗
0, and � = δ − f∗.

Proof. Since (
xFδ(x̃r,δ, r), x − x̃r,δ) = 0 and the functions fi(x) (i = 1,m) are convex, we
have

‖x − x̃r,δ‖2 − (x, x − x̃r,δ) = −(x̃r,δ, x − x̃r,δ)

=
m

∑

i=1

rif
+
i (x̃r,δ)(∇fi(x̃r,δ), x − x̃r,δ) + r0(f0(x̃r,δ) − δ)+(∇f0(x̃r,δ), x − x̃r,δ)

≤
m

∑

i=1

rif
+
i (x̃r,δ)[fi(x) − fi(x̃r,δ)] + r0(f0(x̃r,δ) − δ)+[f0(x) − f0(x̃r,δ)]

for any x ∈ R
n. Hence, for x = x∗

0,

m
∑

i=1

rif
+
i

2(x̃r,δ) + r0(f0(x̃r,δ) − δ)+2 ≤ −‖x∗
0 − x̃r,δ‖2 + (x∗

0, x∗
0 − x̃r,δ)

= −
(

‖x∗
0 − x̃r,δ‖ −

1
2
‖x∗

0‖
)2 +

‖x∗
0‖

2

4
≤ ‖x∗

0‖
2

4
. (8)

The latter inequality immediately implies estimates (5) and (6).
By the definition of the points x∗

0 and λ∗, we have

f∗ − f0(x̃r,δ) = f0(x∗
0) − f0(x̃r,δ) ≤

m
∑

i=1

λ∗
i f

+
i (x̃r,δ). (9)

On the other hand,

f0(x̃r,δ) − f∗ = f0(x̃r,δ) − δ + δ − f∗ ≤ (f0(x̃r,δ) − δ)+ + �. (10)

Estimating (9) and (10) with the help of relations (5) and (6), respectively, we obtain (7).
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The theorem is proved.

The point x∗
0 is the unique solution of the inequality g(x) ≤ 0, where g(x) = max{‖x‖2 −

‖x∗
0‖2, fi(x) (i = 1,m), f0(x) − f∗}. The inequality Fδ(x̃r,δ, r) ≤ Fδ(x∗

0, r) implies ‖x̃r,δ‖ ≤ ‖x∗
0‖

for any r and δ. Further, taking into account estimates (5)–(7), we find that g(x̃r,δ) → 0 as
r̄ = min

0≤i≤m
ri → 0 and � → 0. Since the constraint g(x) ≤ 0 is correct [5], we have lim

r̄→0
δ→f∗

x̃r,δ = x∗
0.

Let us establish a numerical characteristic of the convergence of x̃r,δ to x∗
0. Write the problem

of finding the normal solution x∗
0 as

min{‖x‖2 : x ∈ X, f0(x) ≤ f∗}. (11)

The Lagrange function for (11) has the form H(x, u, u0) = ‖x‖2 +(u, f(x))+u0(f0(x)− f∗), where
u ∈ R

m
+ and u0 ∈ R

1
+. Denote by [x∗

0, u
∗, u∗

0] a saddle point of the function H(x, u, u0) in the
domain R

n ×R
m
+ ×R

1
+. Note that, under the conditions of Theorem 1, this saddle point exists; we

can assume that u∗
0 > 0 (see Section 4 for details).

Theorem 2. Suppose that the conditions of Theorem 1 hold. Then, for any r > 0 and δ > f∗,
the following estimate is valid :

‖x̃r,δ − x∗
0‖2 ≤ 1

16

m
∑

i=0

u∗
i
2

ri
+

1
2
u∗

0 �,

where u∗
i are components of the vector u∗, i = 1,m.

Proof. The existence of the saddle point [x∗
0, u

∗, u∗
0] for the function H(x, u, u0) is equivalent

to the Kuhn–Tucker conditions for (11):


xH(x∗
0, u

∗, u∗
0) = 0, u∗

i fi(x∗
0) = 0, i = 1,m, u∗

0(f0(x∗
0) − f∗) = 0.

These conditions imply the relations

2(x∗
0, x∗

0 − x̃r,δ) =
m

∑

i=1

u∗
i (
fi(x∗

0), x̃r,δ − x∗
0) + u∗

0(
f0(x∗
0), x̃r,δ − x∗

0)

≤
m

∑

i=1

u∗
i [fi(x̃r,δ) − fi(x∗

0)] + u∗
0[f0(x̃r,δ) − f0(x∗

0)] =
m

∑

i=1

u∗
i fi(x̃r,δ) + u∗

0(f0(x̃r,δ) − f∗).

Hence,

2(x∗
0, x∗

0 − x̃r,δ) ≤
m

∑

i=1

u∗
i f

+
i (x̃r,δ) + u∗

0(f0(x̃r,δ) − δ)+ + u∗
0 � .

Substituting this inequality into (8), we obtain

‖x̃r,δ − x∗
0‖2 ≤ −

m
∑

i=1

[

rif
+
i

2(x̃r,δ) −
1
2
u∗

i f
+
i (x̃r,δ)

]

−
[

r0(f0(x̃r,δ) − δ)+2 − 1
2
u∗

0(f0(x̃r,δ) − δ)+
]

+
1
2
u∗

0 � = −
m

∑

i=1

[(√
rif

+
i (x̃r,δ) −

u∗
i

4
√

ri

)2

− u∗
i
2

16 ri

]

−
[(√

r0(f0(x̃r,δ) − δ)+ − u∗
0

4
√

r0

)2

− u∗
0
2

16 r0

]

+
1
2

u∗
0� ≤ 1

16

m
∑

i=0

u∗
i
2

ri
+

1
2
u∗

0 � .

The theorem is proved.
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2. A CP PROBLEM WITH INACCURATELY GIVEN INFORMATION

Suppose that continuous functions f ε
i (x) defined on R

n and such that

|f ε
i (x) − fi(x)| < ε (∀x ∈ R

n, i = 0, 1, . . . ,m), ε > 0, (12)

are known in problem (1) instead of the functions fi(x). Then, we have the following problem
instead of (4):

min
x

F ε
δ (x, r), (13)

where F ε
δ (x, r) is obtained from (4) by the change of the functions fi(x) for f ε

i (x):

F ε
δ (x, r) = ‖x‖2 +

m
∑

i=1

ri[f ε
i
+(x)]2 + r0(f ε

0 (x) − δ)+2
, r = [r0, r1, . . . , rm] > 0.

.

Lemma 1. Problem (13) is solvable for any r, δ, and ε.

Proof. Inequalities (12) imply

Fδ(x, r) = ‖x‖2 +
m

∑

i=1

rif
+
i

2(x) + r0(f0(x) − δ)+2

= F ε
δ (x, r) +

m
∑

i=1

ri

[

f+
i

2(x) − f ε
i
+2(x)

]

+ r0

[

(f0(x) − δ)+2 − (f ε
0 (x) − δ)+2

]

≤ F ε
δ (x, r) + ε

m
∑

i=1

ri

(

2f ε
i
+(x) + ε

)

+ ε r0

[

2(f ε
0 (x) − δ)+ + ε

]

≤ F ε
δ (x, r) +

m
∑

i=1

ri

(

f ε
i
+2(x) + ε2

)

+ r0

[

(

f ε
0 (x) − δ

)+2
+ ε2

]

+ ε2
m

∑

i=0

ri

= 2F ε
δ (x, r) − ‖x‖2 + 2 ε2

m
∑

i=0

ri ≤ 2F ε
δ (x, r) + 2 ε2

m
∑

i=0

ri.

Therefore, if x′ ∈ M ε
1 = {x : F ε

δ (x, r) ≤ C1}, where C1 = C1(ε, r, δ), then

Fδ(x′, r) ≤ 2C1 + 2 ε2
m

∑

i=0

ri = C2(ε, r, δ).

Since the function Fδ(x, r) is strongly convex in x, the set M2 = {x : Fδ(x, r) ≤ C2(ε, r, δ)} is
bounded for any fixed ε, r, and δ. Consequently, the set M ε

1 is also bounded and the continuous
function F ε

δ (x, r) attains its minimum in x on R
n for any ε, r, and δ.

The lemma is proved.

Lemma 1 implies the existence of a solution xε
r,δ of problem (13):

F ε
δ (xε

r,δ, r) = min
x

F ε
δ (x, r).

Theorem 3. If the conditions of Theorem 1 hold, then the following estimates are valid for
any r = [r0, r1, . . . , rm] > 0, δ > f∗, and ε ≥ 0:
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(1) f+
i (xε

r,δ) ≤
√

B0√
ri

+ ε, i = 1,m;

(2) (f0(xε
r,δ) − δ)+ ≤

√
B0√
r0

+ ε;

(3) |f+
0 (xε

r,δ) − f∗| ≤ max
{

m
∑

i=1
λ∗

i

(

√
B0√
ri

+ ε
)

,

√
B0√
r0

+ ε + �
}

;

(4) ‖xε
r,δ‖ ≤

√
B0, where B0 = ‖x∗

0‖2 + ε2
m
∑

i=0
ri, � = δ − f∗, and the values λ∗

i are from

Theorem 1, i = 1,m.

Proof. The definition of the point xε
r,δ implies the inequality F ε

δ (xε
r,δ, r) ≤ F ε

δ (x∗
0, r). Hence,

in view of the inequalities f ε
i (x∗

0) ≤ fi(x∗
0) + ε ≤ ε and f ε

0 (x∗
0) − δ ≤ f0(x∗

0) − δ + ε < ε, we

obtain ‖xε
r,δ‖2 +

∑m
i=1 ri

[

f ε
i
+(xε

r,δ)
]2 + r0

(

f ε
0 (xε

r,δ) − δ
)+2 ≤ ‖x∗

0‖2 + ε2
∑m

i=0 ri = B0. This relation
immediately implies estimates (1), (2), and (4).

To deduce estimate (3), we apply successively inequalities (9) and (10) (with x̃r,δ replaced
by xε

r,δ) and estimates (1) and (2).
The theorem is proved.

Corollary 1. Suppose that ε → 0, � → 0, ri → +∞, i = 0, 1, . . . ,m, and there exists a
constant K such that 0 < ri ≤ K min

0≤i≤m
ri. Then, xε

r,δ → x∗
0.

If, in Theorem 3, instead of the point xε
r,δ, we take an approximate solution x̄ε

r,δ of problem (13)
with given accuracy ξ ≥ 0

F ε
δ (x̄ε

r,δ, r) ≤ min
x

F ε
δ (x, r) + ξ,

then estimates (1)–(4) change very slightly. The difference is that the value B0 must be replaced
by B1 = ‖x∗

0‖2 + ε2
∑m

i=0 ri + ξ.

3. THE REGULARIZED LAGRANGE FUNCTION AND

AN IMPROPER CP PROBLEM OF THE FIRST KIND

Using the regularized Lagrange function Lσ(x, λ), we construct for problem (1) the primal and
dual functions

ϕσ(x) = max
λ≥0

Lσ(x, λ), ψσ(λ) = min
x

Lσ(x, λ),

which are defined everywhere on R
n and R

m
+ , respectively.

It is easy to see that ϕσ(x) = Lσ(x, λ(x)), where λ(x) = 1
2β f+(x). For this, it is sufficient to

check the inequality (
λLσ(x, λ(x)), λ − λ(x)) ≤ 0 for all λ ≥ 0. Thus,

ϕσ(x) = f0(x) +
1
4β

‖f+(x)‖2 + α ‖x‖2.

Evidently, the function ϕσ(x) is strongly convex on R
n. The strong concavity of ψσ(λ) on R

m
+ is also

easily verified. Consequently, there exist unique points xσ = arg min
x

ϕσ(x) and λσ = arg max
λ≥0

ψσ(λ)

and, according to the minimax theorem (see, for example, [7]),

ϕσ(xσ) = ψσ(λσ) = Lσ(xσ, λσ).

Thus, the function Lσ(x, λ) has a unique saddle point in R
n×R

m
+ for any σ > 0. This is its essential

difference from the standard Lagrange function L(x, λ), which is known to have no saddle points
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if X = ∅. Due to this property, the function Lσ(x, λ) is applicable in the analysis and correction
of improper problems.

Let X = ∅ in problem (1); i.e., (1) is an improper CP problem of the first or third kind. Let
us correct the constraints of problem (1) with respect to the right-hand sides. We use the notation
Xξ = {x : f(x) ≤ ξ} and E = {ξ ∈ R

m
+ : Xξ �= ∅}. If the set Xξ is nonempty and bounded for

some ξ or the functions fi(x) (i = 1,m) are affine, then the set E is convex and closed. Then,
there exists a unique element ξ̄ = arg min{‖ξ‖ : ξ ∈ E}. It is also easy to show that Xξ̄ = ˜X, where
˜X = Arg min

x
‖f+(x)‖; moreover, ξ̄ = f+(x̃) for x̃ ∈ ˜X .

Let us formulate the problem
min{f0(x) : x ∈ Xξ̄ }. (14)

Problems (1) and (14) coincide for ξ̄ = 0; problem (14) is an approximation (an optimal correction)
for (1) for ξ̄ �= 0.

Let us formulate a statement about the applicability of the regularized Lagrange function
method to the correction of improper CP problems of the first kind.

Assume that the Kuhn–Tucker conditions for problem (14) hold at a point x̄ ∈ Xξ̄; i.e., there
exists a vector λ̄ ∈ R

m
+ such that


x L(x̄, λ̄) = 0, (λ̄, f(x̄) − ξ̄) = 0. (15)

These conditions hold, for example, for problems of linear and quadratic programming. By (15),
problem (14) is solvable and x̄ is one of its solutions. Note also that, if ξ̄ �= 0 and (15) holds,
problem (1) is an improper CP problem of the first kind.

Theorem 4 [8]. Let conditions (15) hold for problem (14). The following estimates are valid:

‖(f(xσ) − ξ̄)+‖ ≤
√

β C1(σ), (16)

|f0(xσ) − f̄ | ≤ C2(σ), (17)

‖ 
x L(xσ, λσ)‖ ≤
√

α C3(σ), 0 ≤ (λσ, f(xσ) − ξ̄) ≤ C4(σ), (18)

where f̄ = f0(x̄), C1(σ) = 2
[√

β ‖λ̄‖+ (α ‖x̄‖2 + β ‖λ̄‖2)1/2
]

, C2(σ) = max{α ‖x̄‖2,
√

β ‖λ̄‖C1(σ)},
C3(σ) = 2

[√
α ‖x̄‖2 +

√
β ‖λ̄‖C1(σ)

]1/2 , and C4(σ) = 1
2C2

3 (σ).

Estimates (16) and (17) imply that, if σ → 0 and β = o(α), then xσ → x̄0, where x̄0 is the
normal solution of problem (14). Indeed, from the inequality ϕσ(xσ) ≤ ϕσ(x̄0), we have

α ‖xσ‖2 ≤ f̄ − f0(xσ) +
1
4β

[

‖ξ̄‖2 − ‖f+(xσ)‖2
]

+ α ‖x̄0‖2.

Hence,

‖xσ‖2 ≤ ‖x̄0‖2 +
1
α

∣

∣f0(xσ) − f̄
∣

∣. (19)

This, by (17), implies the boundedness of the sequence {xσ} as σ → 0 and β/α → 0. According to
(16) and (17), the limit points {xσ} are optimal in problem (14). Then, (19) and the uniqueness
of the normal solution imply the required convergence.

Estimates (18) show that the point [xσ, λσ ] satisfies conditions (15) as σ → 0.
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If original problem (1) is solvable and regular, then the definitions of the saddle points [xσ, λσ]
and [x∗, λ∗] of the functions Lσ(x, λ) and L(x, λ), respectively, imply [1] the relation

f0(x∗) − β ‖λ∗‖2 ≤ Lσ(xσ, λσ) ≤ f0(x∗) + α ‖x∗‖2,

so that lim
σ→0

Lσ(xσ, λσ) = f0(x∗) = f∗. In the case when (1) is an improper CP problem of the first

kind, in view of (17), we obtain

Lσ(xσ, λσ) = ϕσ(xσ) = f0(xσ) +
1
4β

∥

∥f+(xσ)
∥

∥

2 + α ‖xσ‖2 ≥ f̄ − C2(σ) +
‖ξ̄‖2

4β
.

Hence, lim
σ→0

Lσ(xσ, λσ) = +∞.

Thus, we can judge whether the original problem is proper from the behavior of {Lσ(xσ, λσ)}
as σ → 0.

4. A CP PROBLEM WITH CONFLICTING CONSTRAINTS

Suppose that X = ∅ in problem (1); i.e., (1) is an improper CP problem of the first or third
kind. Evidently, (3) is also an improper problem in this case. If we write the Lagrange function
for problem (3)

Hδ(x, u, u0) = ‖x‖2 + (u, f(x)) + u0(f0(x) − δ),

then inf
x

Hδ(x, u, u0) > −∞ for any u ∈ R
m
+ , u0 ∈ R

1
+, and δ ∈ R

1; i.e., in contrast to (1),

problem (3) can be an improper CP problem of the first kind only.
Assuming δ > inf

x∈Rn
f0(x), consider the set Eδ = {ξ ∈ R

m
+ : Xξ ∩ Mδ} �= ∅. Suppose that there

exist a set of indices I ⊂ {0, 1, . . . ,m} and a number C such that the set
⋂

i∈I{x : fi(x) ≤ C} is
nonempty and bounded. Then, we can specify the unique vector ξ̄δ = arg min{‖ξ‖ : ξ ∈ Eδ}. We
may obtain the following situations.

1. There exists a value δ0 of the parameter δ such that ξ̄δ = 0 for δ ≥ δ0. Then, X �= ∅ and
one of the two cases holds.

1a. Problem (1) is solvable (here, δ0 = f∗).
1b. The infimum ˜f of the function f0(x) is not attained on X (it is possible that ˜f > −∞ and

˜f = −∞).
2. For any δ > inf

x
f0(x), we have ξ̄δ �= 0 (here, X = ∅).

First, consider the case when (3) is an improper CP problem of the first kind. This corresponds
to above situations 1a (when δ < f∗) and 2.

Let us formulate the following problem:

min{‖x‖2 : x ∈ Xξ̄δ
∩ Mδ}. (20)

This problem is always solvable at the unique point x̃δ and coincides with (3) for ξ̄δ = 0. In our
case, ξ̄δ �= 0, and problem (20) can be considered as one of possible approximations for (3).

It is easy to see that the vector f+(xδ), where xδ = arg min
x∈Mδ

‖f+(x)‖2, can be taken as ξ̄δ. The

definition of the vectors ξ̄δ = (ξ̄δ
1, . . . , ξ̄

δ
m) and xδ implies the inequality

2
m

∑

i=1

ξ̄δ
i (
fi(xδ), x − xδ) ≥ 0 (∀x ∈ Mδ).
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Therefore, from the convexity of the functions fi(x), we obtain

‖ξ̄δ‖2 = (ξ̄δ, f(xδ)) ≤ (ξ̄δ, f(x)) −
m

∑

i=1

ξ̄δ
i (
fi(xδ), x − xδ) ≤ (ξ̄δ, f(x)).

Thus,
‖ξ̄δ‖2 ≤ (ξ̄δ, f(x)) (∀x ∈ Mδ). (21)

In what follows, we will consider the regularized Lagrange function Lσ(x, λ) on the set Mδ × R
m
+ .

Similarly to the existence of the saddle point [xσ, λσ] of the function Lσ(x, λ) in the domain R
n×R

m
+ ,

we can find a unique saddle point [xσ
δ , λσ

δ ] of the function Lσ(x, λ) on the set Mδ × R
m
+ . We will

denote by (P σ
δ ) the problem of finding the point [xσ

δ , λσ
δ ].

Let us show that problems (20) and (P σ
δ ) are closely related. Thus, the chain of problems

(1) −→ (3) −→ (20) −→ (P σ
δ )

will specify one of the possible ways to correct improper CP problems.
Assume that the Lagrange function for problem (20)

Hξ,δ(x, u, u0) = ‖x‖2 + (u, f(x) − ξ̄δ) + u0(f0(x) − δ)

has a saddle point [x̃δ , ũδ, ũ0δ] in the domain R
n × R

m
+ × R

1
+; i.e., the following equalities hold:


xHξ,δ(x̃δ , ũδ, ũ0δ) = 0, (ũδ, f(x̃δ) − ξ̄δ) = 0, ũ0δ(f0(x̃δ) − δ) = 0. (22)

Let us investigate the connection between problems (20) and (P σ
δ ).

Theorem 5. Suppose that conditions (22) hold for problem (20) at the point [x̃δ, ũδ, ũ0δ ];
moreover, ũ0δ > 0 and the parameter α of the function Lσ(x, λ) is equal to α0, where α0ũ0δ > 1.
Then, the following estimates are valid:

‖(f(xσ
δ ) − ξ̄δ)+‖ ≤ β B0(δ), (23)

|f0(xσ
δ ) − δ| ≤ β B1(δ), (24)

‖xσ
δ − x̃δ‖ ≤

√

β B2(δ), (25)

where B0(δ) = 2α0‖ũδ‖, B1(δ) = 2α0
2‖ũδ‖2

α0ũ0δ − 1 , and B2(δ) = 1
2
√

α0 ‖ũδ‖.

Proof. The definition of the saddle point [xσ
δ , λσ

δ ] implies the inequality

(
xLσ(xσ
δ , λσ

δ ), x − xσ
δ ) ≥ 0 (∀x ∈ Mδ).

Therefore,
−2α (xσ

δ , x̃δ − xσ
δ ) ≤ (
xL(xσ

δ , λσ
δ ), x̃δ − xσ

δ ).

From this and conditions (22), we obtain

2α ‖x̃δ − xσ
δ ‖2 ≤ α

m
∑

i=1

ũδ
i (
fi(x̃δ), xσ

δ − x̃δ) + αũ0δ(
f0(x̃δ), xσ
δ − x̃δ)

+ (
xL(xσ
δ , λσ

δ ), x̃δ − xσ
δ ) ≤ α

m
∑

i=1

ũδ
i (fi(xσ

δ ) − ξ̄δ − fi(x̃δ) + ξ̄δ)
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+ αũ0δ(f0(xσ
δ ) − δ − f0(x̃δ) + δ) + L(x̃δ, λ

σ
δ ) − L(xσ

δ , λσ
δ )

≤ (αũ0δ − 1)(f0(xσ
δ ) − δ) + α(ũδ , f(xσ

δ ) − ξ̄δ) + (λσ
δ , f(x̃δ) − f(xσ

δ )) (26)

(here, ũδ
i are the components of the vector ũδ, i = 1, . . . ,m).

Further, in view of inequality (21) and the fact that λσ
δ = λ(xσ

δ ) = 1
2β f+(xσ

δ ), we estimate

(λσ
δ , f(x̃δ) − f(xσ

δ )) ≤ (λσ
δ , ξ̄δ − f(xσ

δ )) =
1
2β

(

f+(xσ
δ ), ξ̄δ − f(xσ

δ )
)

=
1
2β

(

ξ̄δ, f
+(xσ

δ )
)

− 1
2β

∥

∥f+(xσ
δ )

∥

∥

2 = − 1
2β

∥

∥f+(xσ
δ ) − ξ̄δ

∥

∥

2 +
1
2β

[∥

∥ξ̄δ

∥

∥

2 −
(

ξ̄δ, f
+(xσ

δ )
)]

≤ − 1
2β

∥

∥f+(xσ
δ ) − ξ̄δ

∥

∥

2 ≤ − 1
2β

∥

∥(f(xσ
δ ) − ξ̄δ)+

∥

∥

2
.

Using the latter inequality and the conditions of the theorem, we obtain from (26), for α = α0,

2‖xσ
δ − x̃δ‖2 ≤ ‖ũδ‖ ‖(f(xσ

δ ) − ξ̄δ)+‖ −
1

2α0β

∥

∥(f(xσ
δ ) − ξ̄δ)+

∥

∥

2

= −
[ 1√

2α0β

∥

∥(f(xσ
δ ) − ξ̄δ)+

∥

∥ −
√

2α0β

2

∥

∥ũδ

∥

∥

]2
+

α0β

2

∥

∥ũδ

∥

∥

2
.

This immediately implies estimates (23) and (25).
It also follows from (26) that (αũ0δ − 1)(δ − f0(xσ

δ )) ≤ α‖ũδ‖ ‖(f(xσ
δ ) − ξ̄δ)+‖. This, in view

of (23) and xσ
δ ∈ Mδ, leads to estimate (24).

The theorem is proved.

Corollary 2. Let β → 0. Then, f+(xσ
δ ) → ξ̄δ, f0(xσ

δ ) → δ, and xσ
δ → x̃δ.

Corollary 3. If (1) is a solvable CP problem, then lim
δ→f∗

lim
β→0

f0(xσ
δ ) = f∗.

Corollary 4. If (1) is an improper CP problem of the first kind, then lim
δ→f̄

lim
β→0

f0(xσ
δ ) = f̄ ,

where f̄ is the optimal value of problem (14).

Consider in more detail the case when (1) is a solvable problem but δ < f∗ in (3). Let
f∗ > δ2 > δ1. Evidently, Mδ2 ⊃ Mδ1 , and X‖ξ̄δ1

‖ ⊃ X‖ξ̄δ2
‖ for the sets Xξ̄δ

. Indeed, since

ξ̄δ = f+(xδ), where xδ = arg min
x∈Mδ

‖f+(x)‖, we have ‖f+(xδ2)‖ ≤ ‖f+(xδ1)‖; i.e., ‖ξ̄δ2‖ ≤ ‖ξ̄δ1‖.

Hence, lim
δ→f∗

‖ξ̄δ‖ = 0.

Assume that the set S =
⋂m

i=0{x : fi(x) ≤ D} is bounded for some D ∈ R
1. Then, the set

S1 = X‖ξ̄δ1
‖ ∩ Mf∗ is also bounded and all the points x̃δ belong to S1 for δ > δ1. Let x̃ be a limit

point of the sequence {x̃δ} as δ → f∗. Hence, x̃ ∈ X∗ = X ∩ Mf∗ . According to the definition of
the point x̃δ, we have ‖x̃δk

‖ ≤ ‖x‖ for all x ∈ Xξ̄δk
∩ Mδk

. Therefore, ‖x̃‖ ≤ ‖x‖ if x ∈ X ∩ Mf∗ .

Consequently, by the uniqueness of the normal solution of problem (1), we obtain x̃ = x∗
0.

Thus, the following statement is valid.

Corollary 5. Assume that δ < f∗ and the set S is bounded in problem (3). Then,

lim
δ→f∗

lim
β→0

xσ
δ = x∗

0.
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Remark. The condition ũ0δ > 0 in Theorem 5 is natural. If δ < f∗, then the point x̃δ lies on
the surface f0(x) = δ and, by conditions (22), we can assume ũ0δ to be positive. If δ ≥ f∗, then
the definition of the point [x̃δ, ũδ, ũ0δ ] for ũ0δ = 0 implies the inequality ‖x̃δ‖ ≤ ‖x‖ (∀x ∈ X).
However, if x̄ = Pr

X
0 and x̄ /∈ X∗, then ‖x̄‖ < ‖x̃δ‖ for f0(x̄) > δ > f∗.

5. A CP PROBLEM WITH CONSISTENT SYSTEM OF CONSTRAINTS

Consider situation 1b for problem (1) formulated in Section 4. Suppose that X �= ∅ in
problem (1) but ˜f = inf

x∈X
f0(x) is not attained; in particular, ˜f = −∞ (problem (1) is an

improper CP problem of the second kind). Denote by {xk} a sequence of points from X for
which lim

k→∞
f0(xk) = ˜f . Evidently, ‖xk‖ → ∞ (k → ∞), and problems (3) and (20) coincide. We

set in (3) δ = fk, where fk = f0(xk). Problem (3) is solvable at a unique point x̄k for any k, and
f0(x̄k) = fk starting with some k.

Assume that Slater’s condition holds for problem (1) at a point x0. Then, there exists a saddle
point [x∗

α, λ∗
α] of the function Lα(x, λ) = L(x, λ) + α ‖x‖2 in the domain R

n
+ ×R

m
+ , α > 0. In other

words, x∗
α and λ∗

α are solutions of the problem

min{Fα(x) = f0(x) + α ‖x‖2 : x ∈ X} (27)

and of the problem dual to (27), respectively. Note that problem (27) approximates original
statement (1) in Tikhonov’s regularization method. It is known (see, for example, [1]) that

min
α→0

f0(x∗
α) = min

α→0
Fα(x∗

α) = ˜f. (28)

Using the notation xσ
fk

= xσ
k , λσ

fk
= λσ

k , we obtain the following relations:

fk + α ‖x̄k‖2 = f0(x̄k) + α ‖x̄k‖2 ≥ f0(x̄k) + (λσ
k , f(x̄k)) + α ‖x̄k‖2 − β ‖λ̄σ

k‖2

= Lσ(x̄k, λ
σ
k) ≥ Lσ(xσ

k , λσ
k) ≥ Lσ(xσ

k , λ∗
α) = f0(xσ

k) + (λ∗
α, f(xσ

k)) + α ‖xσ
k‖2 − β ‖λ∗

α‖2

= Lα(xσ
k , λ∗

α) − β ‖λ∗
α‖2 ≥ Lα(x∗

α, λ∗
α) − β ‖λ∗

α‖2 ≥ f0(x∗
α) − β ‖λ∗

α‖2. (29)

Since [x∗
α, λ∗

α] is a saddle point of the function Lα(x, λ), we have

Lα(x∗
α, λ∗

α) ≤ Lα(x0, λ∗
α).

Hence,

0 ≤ (λ∗
α)i ≤

f0(x0) − f0(x∗
α) + α‖x0‖2

min
1≤i≤m

|fi(x0)| .

Therefore, for ˜f > −∞, the value ‖λ∗
α‖ in (29) is bounded from above by the constant

K1 = m

(

f0(x0) − ˜f + α0‖x0‖2

min
1≤i≤m

|fi(x0)|

)2

for all 0 < α < α0. Thus, in view of (28), it follows from (29) that

lim
k→∞

lim
σ→0

Lσ(xσ
k , λσ

k ) = ˜f. (30)
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If ˜f = −∞, then (30) holds in view of the inequality fk + α ‖x̄k‖2 ≥ Lσ(xσ
k , λσ

k).
In the proof of relation (30), we actually used the close connection between the approach

to the optimal correction of improper CP problems based on the regularized Lagrange function
and Tikhonov’s regularization method. Let us formulate a statement that shows the closeness of
Tikhonov’s method and the residual method.

Theorem 6. If [x∗
α, λ∗

α] is a saddle point of the function Lα(x, λ) in the domain R
n × R

m
+ ,

then
[

x∗
α, 1

αλ∗
α, 1

α
]

is a saddle point of the function H(x, u, u0) in the domain R
n × R

m
+ × R

1
+.

If [x̄, ū, ū0] is a saddle point of H(x, u, u0) in the domain R
n × R

m
+ × R

1
+ and ū0 > 0, then

[

x̄, 1
ū0

ū
]

is a saddle point of the function Lα(x, λ) in the domain R
n × R

m
+ for α = 1

ū0
.

Proof. If [x∗
α, λ∗

α] is a saddle point of the function Lα(x, λ), then the relations

f0(x∗
α) + (λ, f(x∗

α)) + α ‖x∗
α‖2 ≤ f0(x∗

α) + (λ∗
α, f(x∗

α)) + α ‖x∗
α‖2 ≤ f0(x) + (λ∗

α, f(x)) + α ‖x‖2

hold for all x ∈ R
n and λ ∈ R

n
+. However, in this case, the inequalities

1
α

(

f0(x∗
α) − δ

)

+
( 1

α
λ, f(x∗

α)
)

+ ‖x∗
α‖2 ≤ 1

α
(f0(x∗

α) − δ) +
( 1

α
λ∗, f(x∗

α)
)

+ ‖x∗
α‖2

≤ 1
α

(

f0(x) − δ
)

+
( 1

α
λ∗

α, f(x)
)

+ ‖x‖2

are also valid for all x ∈ R
n, λ ∈ R

m
+ , and α > 0.

Now, let [x̄, ū, ū0] be a saddle point of the function H(x, u, u0). The inequality H(x̄, ū, ū0) ≤
H(x, ū, ū0) immediately implies

1
ū0

‖x̄‖2 +
( 1

ū0
ū, f(x̄)

)

+ f0(x̄) ≤ 1
ū0

‖x‖2 +
( 1

ū0
ū, f(x)

)

+ f0(x)

for all x ∈ R
n; i.e.,

L
1
ū0

(

x̄,
1
ū0

ū
)

≤ L
1
ū0

(

x,
1
ū0

ū
)

(∀x ∈ R
n).

The inequality H(x̄, u, u0) ≤ H(x̄, ū, ū0) leads to complementary slackness conditions in the form

(ū, f(x̄)) = 0, ū0(f0(x̄) − δ) = 0.

In view of these conditions, the inequality turns into the relation (u, f(x̄)) ≤ (ū, (f(x̄)) = 0. Hence,

f0(x̄) + (u, f(x̄)) +
1
ū0

∥

∥x̄
∥

∥

2 ≤ f0(x̄) +
( 1

ū0
ū, f(x̄)

)

+
1
ū0

∥

∥x̄
∥

∥

2;

i.e.,

L
1
ū0 (x̄, u) ≤ L

1
ū0

(

x̄,
1
ū0

ū
)

(∀u ∈ R
m
+ ).

The theorem is proved.
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