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It is proved that Birger’s formula can be used to analyze the compliance of a flange and to design the HPR-IPR

coupling of K-300-240 KhTZ turbine-generator set.
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The troubles faced by the national power industry are

well-known. These are the approaching end of the fleet life

of major equipment and, unfortunately, poorer and poorer

skills of operating and maintenance personnel.

To resolve the former problem, i.e., to extend the service

life and improve the reliability and efficiency of equipment,

it is necessary to formulate well-grounded recommendations

on how to increase the load-carrying capacity of “weak” ele-

ments, to detect incipient faults, and to enhance the vibration

reliability of whole units.

Some of the technological and design solutions recently

introduced to improve equipment and to enhance its reliabil-

ity are doubtful, or even dangerous. This problem is many-

sided and should be studied separately.

Because of the poor skills of personnel, faults that were

earlier considered exotic have now become sort of ordinary.

The last year saw more than one events of finding oil in the

central channel of HP rotors [1]. Previously, such statistics

had been acquired for decades.

In the early 2012, one of the T-250 turbines was shut

down because of intensive vibration. An inspection revealed

14 (out of 16) broken bolts of the HPR-IPR coupling.

The HPR-IPR coupling of K-300-240 turbines made by the

Kharkov Turbine Plant (KhTZ) is known to be sensitive to

such faults because of specific design features (three-bearing

HPR-IPR and balancing of the axial forces by the steam

counter-flow in the HPC and IPC). But for the T-250 tur-

bine-generator sets, this case is unique. The cause is simple

in our opinion: gross violation of the coupling assembly

procedure. All the bolts were broken in the template portion,

i.e., by the torque, because of insufficient tightening during

assembly.

In [2, 3], we performed a comprehensive analysis of the

load-carrying capacity of bolts for couplings of three-bearing

rotors using the HPR-IPR coupling of the K-300-240 KhTZ

turbine-generator set as an example and showed that the

fail-safe operation of this coupling can only be ensured by

meeting the very strict assembly and repair requirements.

The analysis was based on Birger’s formula for flange com-

pliance:
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where tan á = 0.4 – 0.6 (found experimentally); a1 and a2 are

the diameters of the bolt underhead and nut (washer) bearing

faces; l1 and l2 are the thicknesses of the flanges of the cou-

pling; dh is the bolt hole diameter; Ef is the elastic modulus of

the flange material.

Equation (1) has been used to design flanges for tight-

ness for more than 50 years now. It can be found, in a some-

what modified form, in all editions of Kostyuk’s Textbook

Dynamics and Strength of Turbomachines.

However, the numerical analysis performed in [4] using

COSMOS software (an application of SolidWorks 3D CAD

system) cast some doubt on Birger’s formula. The correct-

ness of the reasoning and calculations behind this point of

view is highly questionable. For example, Saint Venant’s

principle underlying Birger’s formula is, in fact, disputed in

[4]. Moreover, the calculated results contradict the initial

data.

It was concluded there that “the standards for the

design of flange joints in mechanical engineering should

be revised” because Birger’s formula leads to an error of

more than 48% when used to calculate the sensitivity of the

bolt to the external load as the basic indicator of flange

load-carrying capacity.
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This was the reason why we decided to address the

strength of three-bearing rotors.

Let us first consider the theoretical aspects of the design

of flange joints.

If the boundary conditions for a problem in elasticity are

prescribed so as to accurately describe the real distribution

of forces, then the solution may appear very complicated.

Therefore, use is often made of Saint Venant’s principle

which simplifies the boundary conditions and leads to a solu-

tion very accurately describing the real stress field over the

almost entire body [5]. “Simple solutions... may be very

accurate everywhere, except for the vicinity of the boundary”

[6], i.e., in our case, along the generating line of the pressure

cone in the flange body.

It is this principle that was used first by Bobarykov, who

proposed to model a flange by an equivalent cylinder to cal-

culate its compliance, and then by Birger, who replaced the

cylinder with a “pressure cone” to refine the solution [7].

Physically, introducing the pressure cone means using

not effective stresses (Fig. 1a), but stresses uniformly distrib-

uted over a cross-section of the cone with half apex angle be-

ing á (Fig. 1b ).

This simplification and its validity may be demonstrated

by Saint-Venant’s experiment: two equal yet opposite forces

acting on a rubber bar cause only its local deformation, the

major portion of the bar length remaining undeformed.

Thus, the statement made in [4] that the cone is separated

from the basic metal is wrong! This does not (and cannot)

occur because the pressure cone is just an assumption that al-

lows solving the problem in a simpler way and obtaining a

quite accurate solution.

The error of the solution may be controlled by varying

the angle á (or, to be exact, tan á). It should also be noted that

in most cases, the value of tan á and, hence, the sensitivity of

the bolt to the external load on the flange joint can be deter-

mined with high accuracy only experimentally [8]. This is

why the handbook [8] provides extensive experimental data,

which validate Birger’s formula.

The finite-element method makes it much easier to vali-

date analytic calculations.

In this connection, we used ANSYS software:

1. to validate Birger’s formula by calculating the force

exerted by a bolt of real design tightening a flange that has a

relatively large diameter such that the pressure cone remains

within the flange, the bolt hole being real as well;

2. to validate the formula by calculating a sector of the

bolted coupling of the HP and IP rotors of K-300-240 KhTZ

turbine-generator set.

The models of all parts are based on manufacturer draw-

ings (HPR B-381-20-01 (order 14013), IPR B-783-20-01,

nut M-382-24-02, washer M-382-24-03, bolt M-382-24-

04a). The elastic modulus of all parts E = 210,000 MPa. The

initial elongation of the bolt �
b

0
= 0.2 mm.

The analytic solution predicts that the pre-tightened bolt

will contract the flange by Äf, which can be found from the

formula

�
f

Q� 	 �!
0

, (2)

where Q
0

is the equilibrium force responsible for the initial

deformation of the flange and the bolt.

It is natural that the pretension of the bolt will be less by

this amount:
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where ëb is the compliance of the bolt (calculated by formu-

las from [8]); ÷ = ëf�(ëf + ëb) is the sensitivity of a bolt in a

flanged joint to the external load.

The value of ÷ depends on the value of tan á, which,

as already mentioned, is found from theoretical and experi-

mental data. As tan á is varied within the recommended

range, the pretension of the bolt �
b

varies from 0.1448 to

0.1547 mm and the coefficient ÷ varies from 276 to 0.226.

For the purpose of finite-element analysis, ANSYS solid

models of the joints were first generated. Then they were

meshed using the SOLID95 element to produce mapped

meshes refined in the zones of stress concentration. For ele-

ments that do not transfer loads, free meshes were created.

The computed pretension of the bolt is 0.1455 mm

(÷ = 0.273) in the former case (Fig. 2a) and 0.1420 mm

(÷ = 0.290) in the latter case (Fig. 2b ).

The values of bolt pretension and sensitivity differ in the

two cases because the pressure cone is beyond the flange in

the latter case (Fig. 2). This, naturally, somewhat reduces the

stiffness of the flange (ëf and ÷ increase, while the pretension

of the bolt decreases).

If tan á = 0.4 (the exact value of this coefficient, as al-

ready mentioned, can be found only experimentally), then

the numerical and analytic solutions are in very good agree-

ment in case (i) and differ by 2% for bolt pretension and by

5% for bolt sensitivity in case (ii).
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Fig. 1. Real (a) and Birger’s (b ) stress distribution in clamped

parts.



The error 48% of the coefficient ÷ reported in [4] is

due, in our opinion, to gross miscalculations. This is also

confirmed by an analysis of the results of [4]. For example,

the initial load on the bolt used in [4] was a concentrated

force of 25 tonf, which means that the stress in the waisted

portion ($38 mm) of the bolt under its head should be about

215 MPa. In [4], however, it was stated that this stress is

no higher than 65 MPa, even in the zones of stress con-

centration.

Incidentally, we also used tan á = 0.4 in [2, 3], but on the

ground that with such a value, the coefficient ÷ is greater and,

hence, the stress state of the bolts is worse.

In conclusion, we would like to point out that the

HPR-IPR coupling of K-300-240 KhTZ turbine-generator

set should be assembled in compliance with the requirements

[9] with the amendments from [2].

CONCLUSIONS

Birger’s formula for flange compliance is based on one

of the major principles of elasticity theory. The validity of

this formula is supported by successful long-term use and

numerous experimental data. Naturally, it can be improved

by refining the boundary conditions and complicating the so-

lution, but to say that the formula is incorrect is inadmissible.

Our numerical analysis has confirmed the validity of

Birger’s formula for designing flange joints in general and

the HPR-IPR coupling of K-300-240 KhTZ turbine-genera-

tor set in particular.
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Fig. 2. Deformation

of a bolt and pressure

cone in a flange elon-

gated by 0.2 mm:

a, pressure cone is

within the flange;

b, pressure cone is

beyond the flange.
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