MATHEMATICS =

On Graphs Whose Local Subgraphs Are Strongly Regular with Parameters (115, 18, 1, 3)

Corresponding Member of the RAS A. A. Makhnev^{a, b} Received March 4, 2013

DOI: 10.1134/S1064562413040376

We consider undirected graphs without loops or multiple edges. If a and b are vertices in a graph Γ , then d(a, b) denotes the distance between a and b, and $\Gamma_i(a)$ denotes the subgraph of Γ induced by the set of vertices of Γ that are a distance of *i* away from *a*. The subgraph $\Gamma_1(a)$ is called the neighborhood of a and is denoted by [a]. By a^{\perp} we denote the subgraph that is the ball of radius 1 centered at a. Let \mathcal{F} be a family of graphs. A graph Γ is said to be a locally \mathcal{F} -graph if $[a] \in \mathcal{F}$ for any vertex $a \in \Gamma$.

 Γ is called a regular graph of degree k if [a] contains precisely k vertices for any vertex a in Γ . A graph Γ is said to be an edge-regular graph with parameters (v, k, λ) if Γ is a regular graph of degree k on v vertices and each of its edges lies in λ triangles. Γ is called an amply regular graph with parameters (v, k, λ, μ) if Γ is an edgeregular graph with the corresponding parameters and the subgraph $[a] \cap [b]$ contains μ vertices in the case d(a, b) = 2. An amply regular graph of diameter 2 is called a strongly regular graph.

A graph Γ of diameter d is said to be antipodal if the relation of coincidence or being a distance of d apart on its vertex set is an equivalence relation. An antipodal quotient Γ' is a graph whose vertices are the antipodal classes of Γ and two classes are adjacent if a vertex of one class is adjacent to a vertex of the other class. An antipodal graph Γ is called an *r*-covering (of its antipodal quotient) if each of its antipodal classes contains precisely r vertices.

Let K_{m_1, \ldots, m_n} denote a complete *n*-partite graph with parts of orders $m_1, m_2, ..., m_n$. If $m_1 = m_2 = ... m_n = m$, then this graph is denoted by $K_{n \times m}$.

If vertices u and w are separated by a distance of i in Γ , then $b_i(u, w)$ ($c_i(u, w)$) denotes the number of vertices in the intersection of $\Gamma_{i+1}(u)$ ($\Gamma_{i-1}(u)$) with [w]. A graph of diameter d is called a distance-regular graph with an intersection array $\{b_0, ..., b_{d-1}; c_1, ..., c_d\}$ if $b_i(u, w)$ and $c_i(u, w)$ are independent of the choice of vertices u and w separated by the distance i. Let $a_i =$ $k-b_i-c_i$.

Various classes of distance-regular graphs whose local subgraphs are isomorphic to a given strongly regular graph were investigated in [1]. An issue of special interest is locally Δ -graphs, where Δ is a strongly regular graph with $\lambda = 1$. The known strongly regular graph with $\lambda = 1$ is the point graph of the generalized quadrangle GQ(2, t) with t = 1, 2, 4 or a graph with parameters (81, 20, 1, 6), (243, 22, 1, 2), or (729, 112, 1, 20).

Thus far, the distance-regular graphs whose local subgraphs are isomorphic to a given strongly regular graph with $\lambda = 1$ and $v \leq 81$ have been classified (see [2, 3]).

Proposition. Let Γ be a distance-regular graph whose local subgraphs are isomorphic to a given strongly regu*lar graph* Δ *with* $\lambda = 1$ *and* $v \leq 81$ *. Then one of the fol*lowing assertions holds:

(1) Δ is a (3 × 3)-lattice and Γ is the complement of a (4×4) -lattice or the Johnson graph J (6, 3).

(2) Δ is the point graph of the generalized quadrangle GQ(2, 2) and Γ is the complement of the triangular graph T(8), a strongly regular graph with parameters (36, 15, 6, 6), or a Taylor graph with the intersection array {15, 8, 1; 1, 8, 15}.

(3) Δ is the point graph of the generalized quadrangle GQ(2, 4) and Γ is a strongly regular graph with parameters (64, 27, 10, 12) or a Taylor graph with the intersec*tion array* {27, 16, 1; 1, 16, 27}.

(4) Δ is a strongly regular graph with parameters (81, 20, 1, 6) and Γ is a distance-regular graph with the *intersection array* {81, 60, 1; 1, 20, 81}.

In this work, we classify the distance-regular graphs whose local subgraphs are isomorphic to a strongly regular graph with parameters (115, 18, 1, 3).

Theorem. Let Γ be a distance-regular graph whose local subgraphs are strongly regular with parameters (115, 18, 1, 3). Then one of the following assertions holds:

^a Krasovskii Institute of Mathematics and Mechanics,

Ural Branch, Russian Academy of Sciences,

ul. S. Kovalevskoi 16, Yekaterinburg, 620219 Russia ^b Ural Federal University,

ul. Mira 19, Yekaterinburg, 620002 Russia

e-mail: makhnev@imm.uran.ru

(1) Γ is a strongly regular graph with parameters (576, 115, 18, 24), (484, 115, 18, 30), or (392, 115, 18, 40).

(2) The diameter of Γ is 3, and Γ has the intersection array {115, 96, 8; 1, 8, 92} and the spectrum 115¹, 23²¹⁷, 3⁷¹³, -9^{805} .

(3) The diameter of Γ is 4 and Γ has the intersection

array $\left\{ 115, 96, \frac{40(r-1)}{r}, 1; 1, \frac{40}{r}, 96, 115 \right\}$, where $r \in \{2, 4, 5\}$.

The graph from assertion (3) in the theorem is an AT4(3, 5, r) graph (see [6]). For such a graph, the second neighborhood of a vertex is a distance-regular

graph with the intersection array $\left\{75, 64, \frac{24(r-1)}{r}, \right\}$

 $1; 1, \frac{24}{r}, 64, 75 \bigg\}.$

Below are some auxiliary results.

Lemma 1 ([4, Lemma 3.1]). Let Γ be a strongly regular graph with parameters (v, k, λ, μ) . Then either $k = 2\mu$ and $\lambda = \mu - 1$ (so-called half case) or the nonprincipal eigenvalues n - m and -m of Γ are integers, where $n^2 = (\lambda - \mu)^2 + 4(k - \mu)$, $n - \lambda + \mu = 2m$, and the multiplicity n - m is equal to $\frac{k(m-1)(k+m)}{\mu n}$. Furthermore, if m is an integer larger than 1, then m - 1

thermore, if m is an integer larger than 1, then m - 1 divides $k - \lambda - 1$ and

$$\mu = \lambda + 2 + (m-1) - \frac{k - \lambda - 1}{m - 1},$$
$$n = m - 1 + \frac{k - \lambda - 1}{m - 1}.$$

Lemma 2. Let Γ be a strongly regular graph with parameters (v, k, λ, μ) , Δ be an induced subgraph on N vertices with M edges and vertex degrees $d_1, ..., d_N$. Then

$$(v-N) - (kN - 2M)$$

+ $\left(\lambda M + \mu\left(\begin{pmatrix}N\\2\end{pmatrix} - M\right) - \sum_{i=1}^{N} \begin{pmatrix}d_i\\2\end{pmatrix}\right)$
= $x_0 + \sum_{i=3}^{N} \begin{pmatrix}i-1\\2\end{pmatrix} x_i,$

where x_i is the number of vertices in $\Gamma - \Delta$ that are adjacent to precisely i vertices in Δ .

Lemma 3. Let Γ be a strongly regular graph with parameters (115, 18, 1, 3) and eigenvalues 3 and -5, Δ be a regular subgraph of Γ of degree 3 on n vertices, X_i be the set of vertices from $\Gamma - \Delta$ adjacent to precisely i vertices in Δ , and $x_i = |X_i|$. Then the following assertions hold:

DOKLADY MATHEMATICS Vol. 88 No. 1 2013

$$(1) \sum x_{i} = 115 - n, \sum ix_{i} = 15n, \sum {\binom{i}{2}} x_{i} = \frac{3n^{2} - 15n}{2}, and x_{0} + \sum {\binom{i-1}{2}} x_{i} = 115 + \frac{3n^{2} - 47n}{2}.$$

$$(2) \quad n \leq 40 \quad and \quad we \quad have \quad nx_{0} \leq \frac{(115 - n)((115 - x_{0}) \cdot 4^{2})}{19^{2}}.$$

$$(3) If n = |X_{0}|, then n \leq 20.$$
Proof. By Lemma 2, we have $\sum x_{i} = 115 - n,$

$$\sum ix_{i} = 15n, \sum {\binom{i}{2}} x_{i} = \frac{3n}{2} + 3 \left(\frac{n(n-1)}{2} - \frac{3n}{2}\right) - \frac{3n}{2} - \frac{3n^{2} - 15n}{2}.$$
Therefore, $x_{0} + \sum {\binom{i}{2}} x_{i} = 115 + \frac{(3n^{2} - 47n)}{2}.$

We have $-5 \le 3 - \frac{15n}{115 - n} \le 3$. Therefore, $23n \le 8 \cdot 115$ and $n \le 40$. Moreover, if n = 40, each vertex from $\Gamma - \Delta$ id adjacent to precisely $\frac{15 \cdot 40}{115 - 40} = 8$ vertices from Δ .

Since there are no edges between Δ and X_0 , by Proposition 4.6.1 from [5], we have $nx_0 \leq \frac{(v-n)(v-x_0)(\theta_2-\theta_1)^2}{(2k-\theta_2-\theta_1)^2}$, where $\theta_2 = -5$ and $\theta_1 = 3$

are nonprincipal eigenvalues of Γ . It follows that $nx_0 \le (115 - n)((115 - x_0) \cdot 4^2)$

$$\frac{(113-n)((113-x_0)\cdot 4)}{19^2}$$

If $n = x_0$, we have $19n \le 4(115 - n)$ and $n \le 20$.

Lemma 4. Let Γ be a distance-regular graph of diameter $d \ge 3$ whose local subgraphs are strongly regular with parameters (115, 18, 1, 3), and let $0 = k > \theta_1 > ... > \theta_d$ be the eigenvalues of Γ . Then $\theta_1 \le 23$ and $\theta_d \ge -25$.

Proof. By Terwilliger's theorem [1, Theorem 4.4.3],

we have
$$-5 \ge b^- = -1 - \frac{b_1}{\theta_1 + 1}$$
 and $3 \le b^+ = -1 - \frac{b_1}{\theta_1 + 1}$

 $\frac{b_1}{\theta_d+1}$. Therefore, $\theta_1 \le 23$ and $\theta_d \ge -25$.

In what follows, let Γ be a distance-regular graph of diameter *d* whose local subgraphs are strongly regular with parameters (115, 18, 1, 3). We fix a vertex *u* in Γ and set $k_i = |\Gamma_i(u)|$.

Lemma 5. The following assertions hold:

(1) If the diameter of Γ is 2, then Γ has the parameters (576, 115, 18, 24), (484, 115, 18, 30), or (392, 115, 18, 40).

(2) If the diameter of Γ is larger than 2, then $\mu \in \{6, 8, 10, 12, 16, 20, 24, 30, 32, 40\}.$

(3) If the diameter of Γ is larger than 3, then $\mu \in \{6, 8, 10, 12, 16, 20\}$.

(4) If the diameter of Γ is larger than 4, then $\mu \in \{6, 8, 10, 12\}$.

Proof. By assumption, k = 115 and $\lambda = 18$. If the diameter of Γ is 2, then, by Lemma 1, the number $(\lambda - \mu)^2 + 4(k - \mu)$ is the square of a positive integer *n*. Therefore, $(\mu - 20)^2 + 384 = n^2$ and $(\mu, n) \in \{(10, 22), (16, 20), (24, 20), (30, 22), (40, 28)\}$. It follows that Γ has the eigenvalues 15, -7; 11, -9; 7, -13; 5, -17; or 3, -25. In the first and second cases, the multiplicities of the eigenvalues are not integer. Therefore, Γ has the parameters (576, 115, 18, 24), (484, 115, 18, 30), or (392, 115, 18, 40).

Let the diameter of Γ be larger than 2. By Lemma 3, we have $\mu \le 40$. Since μ is an even divisor of 115 \cdot 96, we have $\mu \in \{6, 8, 10, 12, 16, 20, 24, 30, 32, 40\}$.

Let the diameter of Γ be larger than 3 and u, w, x, y, z be a geodesic 4-path in Γ . Then there are no edges in the graph [x] between $[u] \cap [x]$ and $[x] \cap [z]$ and, by Lemma 3, we have $\mu \le 20$. From this, $\mu \in \{6, 8, 10, 12, 16, 20\}$.

Let the diameter of Γ be larger than 4. Then $\frac{3\mu}{2} \leq$

 $c_3 \le b_2$ and $\mu \ne 20$. If $\mu = 16$, then, by Lemma 3, $b_2 \le 24$ and $c_3 \ge 24$. It follows that d = 5 and $c_3 = b_2 = 24$. Furthermore, $c_3 - b_3 \ge c_2 - b_2 + a_1 + 2$. Therefore, $b_3 \le 12$, a contradiction to $b_3 \ge c_2$.

Remark 1. Let Δ be a strongly regular graph with parameters (576, 115, 18, 24), (484, 115, 18, 30), or (392, 115, 18, 40), and let Γ be a distance-regular graph of diameter *d* that is an *r*-covering of Δ . Then $\mu_{\Gamma} \ge 6$. If d = 5, then Γ has the intersection array {115, 96, t(r-1), 24, 1; 1, 24, *t*, 96, 115}, {115, 96, t(r-1), 30, 1; 1, 30, *t*, 96, 115}, or {115, 96, t(r-1), 40, 1; 1, 40, *t*, 96, 115}. In any case, there are no admissible arrays.

If
$$d = 4$$
, then Γ has the intersection array $\begin{cases} 115, 96, \\ 115$

$$\frac{24(r-1)}{r}, 1; 1, \frac{24}{r}, 96, 115 \right\}, \left\{ 115, 96, \frac{(r-1)30}{r}, 1; 1, \frac{30}{r}, 96, 115 \right\}, \text{ or } \left\{ 115, 96, \frac{(r-1)40}{r}, 1; 1, \frac{40}{r}, 96, 115 \right\}$$

115, the new eigenvalues
$$\theta_1$$
 and θ_3 of Γ are the roots

of the quadratic equation $x^2 - \lambda x - k = 0$, and the mul-

tiplicity of
$$\theta_1 = 23$$
 is $m_1 = \frac{(r-1)v}{\left(2 + \frac{\lambda \theta_1}{k}\right)}$. Therefore, $v =$

392*r* and Γ is an *AT*4(3, 5, *r*) graph.

Lemma 6. The parameter μ is at most 20.

Proof. Let $\mu > 20$. By Lemma 5, the diameter of Γ is 3 and $\mu \in \{24, 30, 32, 40\}$.

If $\mu = 40$, then $k_2 = 23 \cdot 12 = 276$. By Lemma 3, we have $19^2b_2 \le 30(115 - b_2)$. Therefore, $b_2 \le 8$, $c_3 \ge 40 - b_2 + 20$ and $c_3 \in \{60, 69, 72, 84, 92, 96, 115\}$. From this, Γ has the intersection array $\{115, 96, b_2; 1, 40, c_3\}$. In any case, there are no admissible intersection arrays.

Let $\mu = 32$. Then $k_2 = 23 \cdot 15 = 345$ and, by Lemma 3, we have $19^2 \cdot 2b_2 \le 83(115 - b_2)$. Therefore, $b_2 \le 10$, b_2 is odd, $c_3 \ge 32 - b_2 + 20$, c_3 is odd, $c_3 \in \{45, 69, 75, 105, 115\}$, and Γ has the intersection array $\{115, 96, b_2; 1, 32, c_3\}$. In any case, there are no admissible intersection arrays.

Let $\mu = 30$. Then $k_2 = 16 \cdot 23 = 368$ and, by Lemma 3, we have $19^2 \cdot 3b_2 \le 17(115 - b_2) \cdot 8$. Therefore, $b_2 \le 12, c_3 \ge 30 - b_2 + 20$. Hence, Γ has the intersection array {115, 96, b_2 ; 1, 30, c_3 }. In the cases $b_2 = 12, c_3 = 92$ and $b_2 = 5, c_3 = 92$, the graph has the integer eigenvalues 23, 1, -25 and 23, 3, -20. In any case, there are no admissible intersection arrays.

Let $\mu = 24$. Then $k_2 = 23 \cdot 20 = 460$ and, by Lemma 3, we have $19^2 \cdot 3b_2 \le 91(115 - b_2) \cdot 2$. Therefore, $b_2 \le 16$, $c_3 \ge 24 - b_2 + 20$. Hence, Γ has the intersection array {115, 96, b_2 ; 1, 24, c_3 }. In the cases $b_2 = 8$, $c_3 = 92$ and $b_2 = 14$, $c_3 = 92$, the graph has the integer eigenvalues 23, 3, -17 and 23, 1, -21. In any case, there are no admissible intersection arrays.

Lemma 7. If the diameter of Γ is 3, then Γ has the intersection array {115, 96, 8; 1, 8, 92} and the spectrum $115^1, 23^{217}, 3^{713}, -9^{805}$.

Proof. Let the diameter of Γ be equal to 3.

Let $\mu = 20$. Then $k_2 = 24 \cdot 23 = 552$ and, by Lemma 3, we have $19b_2 \le 4(115 - b_2)$. Therefore, $b_2 \le 20$, $c_3 \ge 20 - b_2 + 20$. Hence, Γ has the intersection array {115, 96, b_2 ; 1, 20, c_3 }. If $b_2 = 10$ and $c_3 = 92$, then the graph has the integer eigenvalues 23, 3, -15. In any case, there are no admissible intersection arrays.

The cases $\mu = 10$, 12, 16 are treated in a similar fashion.

Let $\mu = 8$. Then $k_2 = 60 \cdot 23 = 1380$ and, by Lemma 3, we have $19^2b_2 \le 107(115 - b_2) \cdot 2$. Therefore, $b_2 \le 41$. There is the unique admissible intersection array {115, 96, 8; 1, 8, 92} and Γ has the spectrum 115^1 , 23^{217} , 3^{713} , -9^{805} .

Let $\mu = 6$. Then $k_2 = 80 \cdot 23$ and, in the notation of Lemma 3, we obtain $x_2 = 9$, $x_0 + x_1 = 100$, and $x_1 = 72$. Therefore, $b_2 \le 28$ and Γ has the intersection array {115, 96, b_2 ; 1, 6, c_3 }. In any case, there are no admissible intersection arrays. The lemma is proved.

Let $d \ge 4$. Fix a geodesic 4-path u, w, x, at, y, z in Γ .

DOKLADY MATHEMATICS Vol. 88 No. 1 2013

Lemma 8. *If* $\mu = 20$, *then* Γ *has the intersection array* {115, 96, 20, 1; 1, 20, 96, 115}.

Proof. Let $\mu = 20$. Then $k_2 = 552$. By Lemma 3, we have $b_2 = 20$ and $[x] \cap \Gamma_3(u) = [x] \cap [z]$. Furthermore, $[x] \cap \Gamma_2(u)$ is contained in $\Gamma_2(z)$. Therefore, $\Gamma_4(u) = [z]$ and Γ has the intersection array {115, 96, 20, 1; 1, 20, 96, 115}.

Lemma 9. *If* $\mu \neq 20$, *then* $\mu \leq 10$.

Proof. Let $\mu = 16$. Then $k_2 = 30 \cdot 23 = 690$ and, by Lemma 4, we have $16 \le b_2 \le 24$ and $c_3 - b_3 \ge 16 - b_2 + 20$. If $c_3 \le 90$, then $\theta_1 > 25$, a contradiction. Therefore, $c_3 \in \{92, 95, 96\}$.

If $c_3 = 95$, then c_4 is divided by 16, $b_2 = 19$, $b_3 = 16$, $k_3 = 6 \cdot 23$, and Γ has the intersection array {115, 96, 19, 16; 1, 16, 95, 96}, a contradiction to $\theta_4 < -40$.

If
$$c_3 = 92$$
, then c_4 is divided by 4, $k_3 = \frac{15b_2}{2}$, and

 $b_2 = 16$, 18, 20, 22, 24. Therefore, $c_4 = 96$, 100, 104, 108, 112. If $c_4 = 96$, then either $b_2 = 16$ and b_3 is divided by 4, $b_2 = 20$ and $b_3 = 16$, or $b_2 = 24$ and b_3 is divided by 8. If $c_4 = 100$, then either $b_2 = 20$ and b_3 is divided by 4 or b_3 is divided by 5. If $c_4 = 104$, we have $b_2 = 16$ and $b_3 = 13$. If $c_4 = 108$, then either $b_2 = 16$ and $b_3 = 9$ or $b_2 = 24$ and b_3 is divided by 6. In any case, $\theta_1 > 31$.

If $c_3 = 96$, then $c_4 = 115$. If the case of the intersection array {115, 96, 24, 1; 1, 16, 96, 115}, the graph has the spectrum 115^1 , 23^{105} , 3^{345} , -5^{483} , -25^{46} , but $p_{44}^4 = \frac{1}{2}$. In any case, there are no admissible intersection

arrays.

The case $\mu = 12$ is treated in a similar manner.

Lemma 10. If $\mu \le 10$, then Γ has the intersection array {115, 96, 30, 1; 1, 10, 96, 115} or {115, 96, 32, 1; 1, 8, 96, 115}.

Proof. Let $\mu = 10$. Then $k_2 = 48 \cdot 23$ and, by Lemma 4, we have $10 \le b_2 \le 36$ and b_2 is divided by 5. If $c_3 \le 90$, then $\theta_1 > 27$, a contradiction. Therefore, $c_3 \in \{92, 96\}$; $b_2 = 10$, 15, 20, 25, 30, 35; and c_4 is divided by 5.

If $c_3 = 92$, then $k_3 = 12b_2$. Therefore, $c_4 = 100, 105, 110, 115$. If $c_4 = 100$, the number b_2b_3 is divided by 25. If $c_4 = 105, b_2b_3$ is divided by 35. If $c_4 = 110, b_2b_3$ is divided by 55. If $c_4 = 115, b_2b_3$ is divided by 115. In any case, $\theta_1 > 25$.

If
$$c_3 = 96$$
, then $k_3 = \frac{23b_2}{2}$ and $c_4 = 100, 105, 110,$

115. If $c_4 = 100$, then the number b_2b_3 is divided by 200. If $c_4 = 105$, the number b_2b_3 is divided by 210. If $c_4 = 110$, b_2b_3 is divided by 220. If $c_4 = 115$, b_2b_3 is divided by 10. In this case, Γ has the intersection array {115, 96, 30, 1; 1, 10, 96, 115} and the spectrum 115¹, 23²¹⁰, 3³⁴⁵, -5⁹⁶⁶, -25⁴⁶.

DOKLADY MATHEMATICS Vol. 88 No. 1 2013

Let $\mu = 8$. Then $k_2 = 60 \cdot 23$ and, by Lemma 4, we have $8 \le b_2 \le 41$. If $c_3 \le 90$, then $\theta_1 > 23$, a contradiction. Therefore, $c_3 \in \{92, 93, 95, 96\}$.

If $c_3 = 95$, then c_4 is divided by 8; $b_2 = 19$; $b_3 = 8$, 16; $k_3 = 12 \cdot 23$; and Γ has the intersection array {115, 96, 19, b_3 ; 1, 12, 95, 96}, a contradiction to $\theta_1 > 36$.

If $c_3 = 93$, then c_4 is divided by 8; $b_2 = 31$; $b_3 = 8$, 16, 24; $k_3 = 20 \cdot 23$; and Γ has the intersection array {115, 96, 31, b_3 ; 1, 12, 93, 96}, a contradiction to $\theta_1 > 34$.

If $c_3 = 92$, then c_4 is even and $k_3 = 15b_2$, a contradiction to $\theta_1 > 23$.

If
$$c_3 = 96$$
, then $k_3 = \frac{115b_2}{8}$. In this case, Γ has the

intersection array {115, 96, 32, 1; 1, 8, 96, 115} and the spectrum 115^1 , 23^{280} , 3^{345} , -5^{1288} , -25^{46} .

Let $\mu = 6$. Then $k_2 = 80 \cdot 23$ and, by Lemma 4, we have $6 \le b_2 \le 28$. If $c_3 \le 90$, then $\theta_1 > 24$, a contradiction. Therefore, $c_3 \in \{92, 95, 96\}$.

If $c_3 = 95$, then c_4 is divided by 6; $b_2 = 19$; $b_3 = 6$, 12, 18; $k_3 = 16 \cdot 23$; and Γ has the intersection array {115, 96, 19, b_3 ; 1, 6, 95, 96}, a contradiction to $\theta_1 > 34$.

If $c_3 = 92$, then c_4 is divided by 3 and $k_3 = 20b_2$, a contradiction to $\theta_1 > 24$.

If $c_3 = 96$, then $k_3 = \frac{115b_2}{6}$. In this case, there are

no admissible intersection arrays.

Lemma 11. The following assertions hold:

- (1) If $\mu = 12$, then $d \le 5$.
- (2) If $\mu = 6, 8, 10$, then $d \le 6$.

Proof. We have $c_3 - b_3 \ge c_2 - b_2 + 20$, ..., $c_i - b_i \ge c_{i-1} - b_{i-1} + 20$. Summing up the inequalities termwise yields $c_i - b_i \ge c_2 - b_2 + (i-2) \cdot 20$.

If $\mu = 12$, then, by Lemma 3, we have $b_2 \le 31$ and $c_3 - b_3 \ge 12 - b_2 + 20$. Therefore, $d \le 5$.

If $\mu = 6$, then, by Lemma 3, we have $b_2 \le 28$, $c_4 - b_4 \ge 46 - b_2$, and $d \le 7$. If d = 7, then $c_5 - b_5 \ge 6 - 28 + 60$, a contradiction.

If $\mu = 10$, then, by Lemma 3, we have $b_2 \le 36$. Therefore, $c_4 - b_4 \ge 50 - b_2$ and $d \le 7$. If d = 7, we obtain $c_5 - b_5 \ge 10 - 36 + 60$. Therefore, $b_5 \le 2$ and b_5b_6 is not divided by 10, a contradiction.

If $\mu = 8$, then $k_2 = 60 \cdot 23$ and, by Lemma 3, we have $b_2 \le 41$. Therefore, $c_4 - b_4 \ge 48 - b_2$ and $d \le 7$. If d = 7, then $c_5 - b_5 \ge 8 - 41 + 60 = 37$. Therefore, $b_5 \le 4$. Since b_5b_6 is divided by 8, we have $b_5 = 4$; $b_6 = 2$; $b_2 = c_5 = 41$; and the numbers b_3 , c_4 , and c_6 are divided by 8. Moreover, $c_3 - b_3 = -13$ and $c_4 - b_4 = 7$. Now the pair (b_3, c_3) coincides with (40, 27), (32, 19), or (24, 11), a contradiction to the fact that c_3 divides 60.

Lemma 12. *If* $d \in \{5, 6\}$ *, then there are no admissible intersection arrays.*

Proof. Elementary computer calculations. The lemma, together with the theorem, is proved.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 12-01-00012 and joint project no. 12-01-91155 with the National Science Fund of China), by the Branch of Mathematics of the Russian Academy of Sciences (project no. 12-T-1-1003), and by the Ural Branch of the Russian Academy of Sciences jointly with the Siberian Branch of the Russian Academy of Sciences (project no. 12-1-1018) and with the National Academy of Sciences of Belarus (project no. 12-S-1-1009).

REFERENCES

- 1. A. E. Brouwer, A. M. Cohen, and A. Neumaier, *Distance-Regular Graphs* (Springer-Verlag, Berlin, 1989).
- 2. F. Buekenhout and X. Hubaut, J. Algebra **45**, 391–434 (1977).
- 3. V. V. Kabanov, A. A. Makhnev, and D. V. Paduchikh, Tr. Inst. Mat. Mekh. 16 (23), 105–116 (2010).
- 4. A. A. Makhnev, Diskret. Anal. Issled. Oper. **3** (3), 71–83 (1996).
- 5. A. E. Brouwer and W. H. Haemers, http://www. win.tue.nl/aeb/
- 6. A. Jurisic, Discrete Math. 264 (1-3), 127-148 (2003).

Translated by I. Ruzanova