On Graphs Whose Local Subgraphs Are Strongly Regular with Parameters (115, 18, 1, 3)

Corresponding Member of the RAS A. A. Makhnev ${ }^{a, b}$
Received March 4, 2013

DOI: 10.1134/S1064562413040376

We consider undirected graphs without loops or multiple edges. If a and b are vertices in a graph Γ, then $d(a, b)$ denotes the distance between a and b, and $\Gamma_{i}(a)$ denotes the subgraph of Γ induced by the set of vertices of Γ that are a distance of i away from a. The subgraph $\Gamma_{1}(a)$ is called the neighborhood of a and is denoted by $[a]$. By a^{\perp} we denote the subgraph that is the ball of radius 1 centered at a. Let \mathscr{F} be a family of graphs. A graph Γ is said to be a locally \mathscr{F}-graph if $[a] \in \mathscr{F}$ for any vertex $a \in \Gamma$.
Γ is called a regular graph of degree k if $[a]$ contains precisely k vertices for any vertex a in Γ. A graph Γ is said to be an edge-regular graph with parameters ($\mathrm{v}, \mathrm{k}, \lambda$) if Γ is a regular graph of degree k on v vertices and each of its edges lies in λ triangles. Γ is called an amply regular graph with parameters (v, k, λ, μ) if Γ is an edgeregular graph with the corresponding parameters and the subgraph $[a] \cap[b]$ contains μ vertices in the case $d(a, b)=2$. An amply regular graph of diameter 2 is called a strongly regular graph.

A graph Γ of diameter d is said to be antipodal if the relation of coincidence or being a distance of d apart on its vertex set is an equivalence relation. An antipodal quotient Γ^{\prime} is a graph whose vertices are the antipodal classes of Γ and two classes are adjacent if a vertex of one class is adjacent to a vertex of the other class. An antipodal graph Γ is called an r-covering (of its antipodal quotient) if each of its antipodal classes contains precisely r vertices.

Let $K_{m_{1}, \ldots, m_{n}}$ denote a complete n-partite graph with parts of orders $m_{1}, m_{2}, \ldots, m_{n}$. If $m_{1}=m_{2}=\ldots m_{n}=m$, then this graph is denoted by $K_{n \times m}$.

If vertices u and w are separated by a distance of i in Γ, then $b_{i}(u, w)\left(c_{i}(u, w)\right)$ denotes the number of vertices in the intersection of $\Gamma_{i+1}(u)\left(\Gamma_{i-1}(u)\right)$ with $[w]$.

[^0]A graph of diameter d is called a distance-regular graph with an intersection array $\left\{b_{0}, \ldots, b_{d-1} ; c_{1}, \ldots, c_{d}\right\}$ if $b_{i}(u, w)$ and $c_{i}(u, w)$ are independent of the choice of vertices u and w separated by the distance i. Let $a_{i}=$ $k-b_{i}-c_{i}$.

Various classes of distance-regular graphs whose local subgraphs are isomorphic to a given strongly regular graph were investigated in [1]. An issue of special interest is locally Δ-graphs, where Δ is a strongly regular graph with $\lambda=1$. The known strongly regular graph with $\lambda=1$ is the point graph of the generalized quadrangle $G Q(2, t)$ with $t=1,2,4$ or a graph with parameters $(81,20,1,6),(243,22,1,2)$, or $(729,112,1,20)$.

Thus far, the distance-regular graphs whose local subgraphs are isomorphic to a given strongly regular graph with $\lambda=1$ and $v \leq 81$ have been classified (see $[2,3])$.

Proposition. Let Γ be a distance-regular graph whose local subgraphs are isomorphic to a given strongly regular graph Δ with $\lambda=1$ and $v \leq 81$. Then one of the following assertions holds:
(1) Δ is a (3×3)-lattice and Γ is the complement of a (4×4)-lattice or the Johnson graph $J(6,3)$.
(2) Δ is the point graph of the generalized quadrangle $G Q(2,2)$ and Γ is the complement of the triangular graph $T(8)$, a strongly regular graph with parameters $(36,15,6,6)$, or a Taylor graph with the intersection array $\{15,8,1 ; 1,8,15\}$.
(3) Δ is the point graph of the generalized quadrangle $G Q(2,4)$ and Γ is a strongly regular graph with parameters ($64,27,10,12$) or a Taylor graph with the intersection array $\{27,16,1 ; 1,16,27\}$.
(4) Δ is a strongly regular graph with parameters (81, 20, 1, 6) and Γ is a distance-regular graph with the intersection array $\{81,60,1 ; 1,20,81\}$.

In this work, we classify the distance-regular graphs whose local subgraphs are isomorphic to a strongly regular graph with parameters (115, 18, 1, 3).

Theorem. Let Γ be a distance-regular graph whose local subgraphs are strongly regular with parameters (115, 18, 1, 3). Then one of the following assertions holds:
(1) Γ is a strongly regular graph with parameters $(576,115,18,24),(484,115,18,30)$, or $(392,115$, 18, 40).
(2) The diameter of Γ is 3 , and Γ has the intersection array $\{115,96,8 ; 1,8,92\}$ and the spectrum $115^{1}, 23^{217}$, $3^{713},-9^{805}$.
(3) The diameter of Γ is 4 and Γ has the intersection array $\left\{115,96, \frac{40(r-1)}{r}, 1 ; 1, \frac{40}{r}, 96,115\right\}$, where $r \in\{2,4,5\}$.

The graph from assertion (3) in the theorem is an AT4(3, 5, r) graph (see [6]). For such a graph, the second neighborhood of a vertex is a distance-regular graph with the intersection array $\left\{75,64, \frac{24(r-1)}{r}\right.$, $\left.1 ; 1, \frac{24}{r}, 64,75\right\}$.

Below are some auxiliary results.
Lemma 1 ([4, Lemma 3.1]). Let Γ be a strongly regular graph with parameters (v, k, λ, μ). Then either $k=2 \mu$ and $\lambda=\mu-1$ (so-called half case) or the nonprincipal eigenvalues $n-m$ and $-m$ of Γ are integers, where $n^{2}=(\lambda-\mu)^{2}+4(k-\mu), n-\lambda+\mu=2 m$, and the multiplicity $n-m$ is equal to $\frac{k(m-1)(k+m)}{\mu n}$. Furthermore, if m is an integer larger than 1 , then $m-1$ divides $k-\lambda-1$ and

$$
\begin{gathered}
\mu=\lambda+2+(m-1)-\frac{k-\lambda-1}{m-1} \\
n=m-1+\frac{k-\lambda-1}{m-1}
\end{gathered}
$$

Lemma 2. Let Γ be a strongly regular graph with parameters (v, k, λ, μ), Δ be an induced subgraph on N vertices with Medges and vertex degrees d_{1}, \ldots, d_{N}. Then

$$
\begin{gathered}
(v-N)-(k N-2 M) \\
+\left(\lambda M+\mu\left(\binom{N}{2}-M\right)-\sum_{i=1}^{N}\binom{d_{i}}{2}\right) \\
=x_{0}+\sum_{i=3}^{N}\binom{i-1}{2} x_{i},
\end{gathered}
$$

where x_{i} is the number of vertices in $\Gamma-\Delta$ that are adjacent to precisely i vertices in Δ.

Lemma 3. Let Γ be a strongly regular graph with parameters (115, 18, 1, 3) and eigenvalues 3 and -5, Δ be a regular subgraph of Γ of degree 3 on n vertices, X_{i} be the set of vertices from $\Gamma-\Delta$ adjacent to precisely i vertices in Δ, and $x_{i}=\left|X_{i}\right|$. Then the following assertions hold:
(1) $\sum x_{i}=115-n, \sum i x_{i}=15 n, \sum\binom{i}{2} x_{i}=$ $\frac{3 n^{2}-15 n}{2}$, and $x_{0}+\sum\binom{i-1}{2} x_{i}=115+\frac{3 n^{2}-47 n}{2}$.
(2) $n \leq 40$ and we have $n x_{0} \leq$ $\frac{(115-n)\left(\left(115-x_{0}\right) \cdot 4^{2}\right)}{19^{2}}$.
(3) If $n=\left|X_{0}\right|$, then $n \leq 20$.

Proof. By Lemma 2, we have $\sum x_{i}=115-n$, $\sum i x_{i}=15 n, \sum\binom{i}{2} x_{i}=\frac{3 n}{2}+3\left(\frac{n(n-1)}{2}-\frac{3 n}{2}\right)-$ $3 n=\frac{3 n^{2}-15 n}{2}$. Therefore, $x_{0}+\sum\binom{i}{2} x_{i}=115+$ $\frac{\left(3 n^{2}-47 n\right)}{2}$.

We have $-5 \leq 3-\frac{15 n}{115-n} \leq 3$. Therefore, $23 n \leq 8$. 115 and $n \leq 40$. Moreover, if $n=40$, each vertex from $\Gamma-\Delta$ id adjacent to precisely $\frac{15 \cdot 40}{115-40}=8$ vertices from Δ.

Since there are no edges between Δ and X_{0}, by Proposition 4.6.1 from [5], we have $n x_{0} \leq$ $\frac{(v-n)\left(v-x_{0}\right)\left(\theta_{2}-\theta_{1}\right)^{2}}{\left(2 k-\theta_{2}-\theta_{1}\right)^{2}}$, where $\theta_{2}=-5$ and $\theta_{1}=3$ are nonprincipal eigenvalues of Γ. It follows that $n x_{0} \leq$ $\frac{(115-n)\left(\left(115-x_{0}\right) \cdot 4^{2}\right)}{19^{2}}$.

If $n=x_{0}$, we have $19 n \leq 4(115-n)$ and $n \leq 20$.
Lemma 4. Let Γ be a distance-regulargraph of diameter $d \geq 3$ whose local subgraphs are strongly regular with parameters $(115,18,1,3)$, and let $0=k>\theta_{1}>\ldots>\theta_{d}$ be the eigenvalues of Γ. Then $\theta_{1} \leq 23$ and $\theta_{d} \geq-25$.

Proof. By Terwilliger's theorem [1, Theorem 4.4.3], we have $-5 \geq b^{-}=-1-\frac{b_{1}}{\theta_{1}+1}$ and $3 \leq b^{+}=-1-$ $\frac{b_{1}}{\theta_{d}+1}$. Therefore, $\theta_{1} \leq 23$ and $\theta_{d} \geq-25$.

In what follows, let Γ be a distance-regular graph of diameter d whose local subgraphs are strongly regular with parameters $(115,18,1,3)$. We fix a vertex u in Γ and set $k_{i}=\left|\Gamma_{i}(u)\right|$.

Lemma 5. The following assertions hold:
(1) If the diameter of Γ is 2, then Γ has the parameters $(576,115,18,24),(484,115,18,30)$, or $(392,115$, $18,40)$.
(2) If the diameter of Γ is larger than 2, then $\mu \in$ $\{6,8,10,12,16,20,24,30,32,40\}$.
(3) If the diameter of Γ is larger than 3, then $\mu \in$ $\{6,8,10,12,16,20\}$.
(4) If the diameter of Γ is larger than 4, then $\mu \in$ $\{6,8,10,12\}$.

Proof. By assumption, $k=115$ and $\lambda=18$. If the diameter of Γ is 2 , then, by Lemma 1, the number (λ -$\mu)^{2}+4(k-\mu)$ is the square of a positive integer n. Therefore, $(\mu-20)^{2}+384=n^{2}$ and $(\mu, n) \in\{(10,22)$, $(16,20),(24,20),(30,22),(40,28)\}$. It follows that Γ has the eigenvalues $15,-7 ; 11,-9 ; 7,-13 ; 5,-17$; or $3,-25$. In the first and second cases, the multiplicities of the eigenvalues are not integer. Therefore, Γ has the parameters $(576,115,18,24),(484,115,18,30)$, or (392, 115, 18, 40).

Let the diameter of Γ be larger than 2. By Lemma 3, we have $\mu \leq 40$. Since μ is an even divisor of $115 \cdot 96$, we have $\mu \in\{6,8,10,12,16,20,24,30,32,40\}$.

Let the diameter of Γ be larger than 3 and u, w, x, y, z be a geodesic 4-path in Γ. Then there are no edges in the graph $[x]$ between $[u] \cap[x]$ and $[x] \cap[z]$ and, by Lemma 3, we have $\mu \leq 20$. From this, $\mu \in\{6,8,10,12$, 16, 20$\}$.

Let the diameter of Γ be larger than 4 . Then $\frac{3 \mu}{2} \leq$ $c_{3} \leq b_{2}$ and $\mu \neq 20$. If $\mu=16$, then, by Lemma 3, $b_{2} \leq 24$ and $c_{3} \geq 24$. It follows that $d=5$ and $c_{3}=b_{2}=24$. Furthermore, $c_{3}-b_{3} \geq c_{2}-b_{2}+a_{1}+2$. Therefore, $b_{3} \leq 12$, a contradiction to $b_{3} \geq c_{2}$.

Remark 1. Let Δ be a strongly regular graph with parameters (576, 115, 18, 24), (484, 115, 18, 30), or (392, 115, 18, 40), and let Γ be a distance-regular graph of diameter d that is an r-covering of Δ. Then $\mu_{\Gamma} \geq 6$. If $d=5$, then Γ has the intersection array $\{115$, 96, $t(r-1), 24,1 ; 1,24, t, 96,115\},\{115,96, t(r-1)$, $30,1 ; 1,30, t, 96,115\}$, or $\{115,96, t(r-1), 40,1 ; 1$, $40, t, 96,115\}$. In any case, there are no admissible arrays.

If $d=4$, then Γ has the intersection array $\{115,96$,
$\left.\frac{24(r-1)}{r}, 1 ; 1, \frac{24}{r}, 96,115\right\},\left\{115,96, \frac{(r-1) 30}{r}, 1 ;\right.$
$\left.1, \frac{30}{r}, 96,115\right\}$, or $\left\{115,96, \frac{(r-1) 40}{r}, 1 ; 1, \frac{40}{r}, 96\right.$,
$115\}$, the new eigenvalues θ_{1} and θ_{3} of Γ are the roots of the quadratic equation $x^{2}-\lambda x-k=0$, and the mul-
tiplicity of $\theta_{1}=23$ is $m_{1}=\frac{(r-1) \mathrm{v}}{\left(2+\frac{\lambda \theta_{1}}{k}\right)}$. Therefore, $v=$
$392 r$ and Γ is an $\operatorname{AT4}(3,5, r)$ graph.
Lemma 6. The parameter μ is at most 20.
Proof. Let $\mu>20$. By Lemma 5, the diameter of Γ is 3 and $\mu \in\{24,30,32,40\}$.

If $\mu=40$, then $k_{2}=23 \cdot 12=276$. By Lemma 3, we have $19^{2} b_{2} \leq 30\left(115-b_{2}\right)$. Therefore, $b_{2} \leq 8, c_{3} \geq 40-$ $b_{2}+20$ and $c_{3} \in\{60,69,72,84,92,96,115\}$. From this, Γ has the intersection array $\left\{115,96, b_{2} ; 1,40, c_{3}\right\}$. In any case, there are no admissible intersection arrays.

Let $\mu=32$. Then $k_{2}=23 \cdot 15=345$ and, by Lemma 3, we have $19^{2} \cdot 2 b_{2} \leq 83\left(115-b_{2}\right)$. Therefore, $b_{2} \leq 10$, b_{2} is odd, $c_{3} \geq 32-b_{2}+20, c_{3}$ is odd, $c_{3} \in\{45,69,75$, $105,115\}$, and Γ has the intersection array $\left\{115,96, b_{2}\right.$; $\left.1,32, c_{3}\right\}$. In any case, there are no admissible intersection arrays.

Let $\mu=30$. Then $k_{2}=16 \cdot 23=368$ and, by Lemma 3 , we have $19^{2} \cdot 3 b_{2} \leq 17\left(115-b_{2}\right) \cdot 8$. Therefore, $b_{2} \leq 12, c_{3} \geq 30-b_{2}+20$. Hence, Γ has the intersection array $\left\{115,96, b_{2} ; 1,30, c_{3}\right\}$. In the cases $b_{2}=12, c_{3}=92$ and $b_{2}=5, c_{3}=92$, the graph has the integer eigenvalues $23,1,-25$ and $23,3,-20$. In any case, there are no admissible intersection arrays.

Let $\mu=24$. Then $k_{2}=23 \cdot 20=460$ and, by Lemma 3 , we have $19^{2} \cdot 3 b_{2} \leq 91\left(115-b_{2}\right) \cdot 2$. Therefore, $b_{2} \leq 16, c_{3} \geq 24-b_{2}+20$. Hence, Γ has the intersection array $\left\{115,96, b_{2} ; 1,24, c_{3}\right\}$. In the cases $b_{2}=8$, $c_{3}=92$ and $b_{2}=14, c_{3}=92$, the graph has the integer eigenvalues $23,3,-17$ and $23,1,-21$. In any case, there are no admissible intersection arrays.

Lemma 7. If the diameter of Γ is 3 , then Γ has the intersection array $\{115,96,8 ; 1,8,92\}$ and the spectrum $115^{1}, 23^{217}, 3^{713},-9^{805}$.

Proof. Let the diameter of Γ be equal to 3 .
Let $\mu=20$. Then $k_{2}=24 \cdot 23=552$ and, by Lemma 3, we have $19 b_{2} \leq 4\left(115-b_{2}\right)$. Therefore, $b_{2} \leq 20$, $c_{3} \geq 20-b_{2}+20$. Hence, Γ has the intersection array $\left\{115,96, b_{2} ; 1,20, c_{3}\right\}$. If $b_{2}=10$ and $c_{3}=92$, then the graph has the integer eigenvalues $23,3,-15$. In any case, there are no admissible intersection arrays.

The cases $\mu=10,12,16$ are treated in a similar fashion.

Let $\mu=8$. Then $k_{2}=60 \cdot 23=1380$ and, by Lemma 3, we have $19^{2} b_{2} \leq 107\left(115-b_{2}\right) \cdot 2$. Therefore, $b_{2} \leq 41$. There is the unique admissible intersection array $\{115$, $96,8 ; 1,8,92\}$ and Γ has the spectrum $115^{1}, 23^{217}$, $3^{713},-9^{805}$.

Let $\mu=6$. Then $k_{2}=80 \cdot 23$ and, in the notation of Lemma 3, we obtain $x_{2}=9, x_{0}+x_{1}=100$, and $x_{1}=72$. Therefore, $b_{2} \leq 28$ and Γ has the intersection array $\left\{115,96, b_{2} ; 1,6, c_{3}\right\}$. In any case, there are no admissible intersection arrays. The lemma is proved.

Let $d \geq 4$. Fix a geodesic 4-path u, w, x at, y, z in Γ.

Lemma 8. If $\mu=20$, then Γ has the intersection array $\{115,96,20,1 ; 1,20,96,115\}$.

Proof. Let $\mu=20$. Then $k_{2}=552$. By Lemma 3, we have $b_{2}=20$ and $[x] \cap \Gamma_{3}(u)=[x] \cap[z]$. Furthermore, $[x] \cap \Gamma_{2}(u)$ is contained in $\Gamma_{2}(z)$. Therefore, $\Gamma_{4}(u)=$ $[z]$ and Γ has the intersection array $\{115,96,20,1 ; 1$, 20, 96, 115\}.

Lemma 9. If $\mu \neq 20$, then $\mu \leq 10$.
Proof. Let $\mu=16$. Then $k_{2}=30 \cdot 23=690$ and, by Lemma 4, we have $16 \leq b_{2} \leq 24$ and $c_{3}-b_{3} \geq 16-b_{2}+20$. If $c_{3} \leq 90$, then $\theta_{1}>25$, a contradiction. Therefore, $c_{3} \in\{92,95,96\}$.

If $c_{3}=95$, then c_{4} is divided by $16, b_{2}=19, b_{3}=16$, $k_{3}=6 \cdot 23$, and Γ has the intersection array $\{115,96$, $19,16 ; 1,16,95,96\}$, a contradiction to $\theta_{4}<-40$.

If $c_{3}=92$, then c_{4} is divided by $4, k_{3}=\frac{15 b_{2}}{2}$, and $b_{2}=16,18,20,22,24$. Therefore, $c_{4}=96,100,104$, 108, 112. If $c_{4}=96$, then either $b_{2}=16$ and b_{3} is divided by $4, b_{2}=20$ and $b_{3}=16$, or $b_{2}=24$ and b_{3} is divided by 8 . If $c_{4}=100$, then either $b_{2}=20$ and b_{3} is divided by 4 or b_{3} is divided by 5 . If $c_{4}=104$, we have $b_{2}=16$ and $b_{3}=13$. If $c_{4}=108$, then either $b_{2}=16$ and $b_{3}=9$ or $b_{2}=24$ and b_{3} is divided by 6 . In any case, $\theta_{1}>31$.

If $c_{3}=96$, then $c_{4}=115$. If the case of the intersection array $\{115,96,24,1 ; 1,16,96,115\}$, the graph has the spectrum $115^{1}, 23^{105}, 3^{345},-5^{483},-25^{46}$, but $p_{44}^{4}=\frac{1}{2}$.
In any case, there are no admissible intersection arrays.

The case $\mu=12$ is treated in a similar manner.
Lemma 10. If $\mu \leq 10$, then Γ has the intersection array $\{115,96,30,1 ; 1,10,96,115\}$ or $\{115,96,32,1$; $1,8,96,115\}$.

Proof. Let $\mu=10$. Then $k_{2}=48 \cdot 23$ and, by Lemma 4, we have $10 \leq b_{2} \leq 36$ and b_{2} is divided by 5 . If $c_{3} \leq 90$, then $\theta_{1}>27$, a contradiction. Therefore, $c_{3} \in\{92,96\} ; b_{2}=10,15,20,25,30,35$; and c_{4} is divided by 5 .

If $c_{3}=92$, then $k_{3}=12 b_{2}$. Therefore, $c_{4}=100,105$, 110,115 . If $c_{4}=100$, the number $b_{2} b_{3}$ is divided by 25 . If $c_{4}=105, b_{2} b_{3}$ is divided by 35 . If $c_{4}=110, b_{2} b_{3}$ is divided by 55 . If $c_{4}=115, b_{2} b_{3}$ is divided by 115 . In any case, $\theta_{1}>25$.

$$
\text { If } c_{3}=96, \text { then } k_{3}=\frac{23 b_{2}}{2} \text { and } \mathrm{c}_{4}=100,105,110
$$

115. If $c_{4}=100$, then the number $b_{2} b_{3}$ is divided by 200. If $c_{4}=105$, the number $b_{2} b_{3}$ is divided by 210 . If $c_{4}=110, b_{2} b_{3}$ is divided by 220 . If $c_{4}=115, b_{2} b_{3}$ is divided by 10. In this case, Γ has the intersection array $\{115,96,30,1 ; 1,10,96,115\}$ and the spectrum 115^{1}, $23^{210}, 3^{345},-5^{966},-25^{46}$.

Let $\mu=8$. Then $k_{2}=60 \cdot 23$ and, by Lemma 4, we have $8 \leq b_{2} \leq 41$. If $c_{3} \leq 90$, then $\theta_{1}>23$, a contradiction. Therefore, $c_{3} \in\{92,93,95,96\}$.

If $c_{3}=95$, then c_{4} is divided by $8 ; b_{2}=19 ; b_{3}=8$, $16 ; k_{3}=12 \cdot 23$; and Γ has the intersection array $\{115$, $\left.96,19, b_{3} ; 1,12,95,96\right\}$, a contradiction to $\theta_{1}>36$.

If $c_{3}=93$, then c_{4} is divided by $8 ; b_{2}=31 ; b_{3}=8$, 16,$24 ; k_{3}=20 \cdot 23$; and Γ has the intersection array $\left\{115,96,31, b_{3} ; 1,12,93,96\right\}$, a contradiction to $\theta_{1}>34$.

If $c_{3}=92$, then c_{4} is even and $k_{3}=15 b_{2}$, a contradiction to $\theta_{1}>23$.

If $c_{3}=96$, then $k_{3}=\frac{115 b_{2}}{8}$. In this case, Γ has the intersection array $\{115,96,32,1 ; 1,8,96,115\}$ and the spectrum $115^{1}, 23^{280}, 3^{345},-5^{1288},-25^{46}$.

Let $\mu=6$. Then $k_{2}=80 \cdot 23$ and, by Lemma 4 , we have $6 \leq b_{2} \leq 28$. If $c_{3} \leq 90$, then $\theta_{1}>24$, a contradiction. Therefore, $c_{3} \in\{92,95,96\}$.

If $c_{3}=95$, then c_{4} is divided by $6 ; b_{2}=19 ; b_{3}=6$, 12,$18 ; k_{3}=16 \cdot 23$; and Γ has the intersection array $\left\{115,96,19, b_{3} ; 1,6,95,96\right\}$, a contradiction to $\theta_{1}>34$.

If $c_{3}=92$, then c_{4} is divided by 3 and $k_{3}=20 b_{2}$, a contradiction to $\theta_{1}>24$.

If $c_{3}=96$, then $k_{3}=\frac{115 b_{2}}{6}$. In this case, there are no admissible intersection arrays.

Lemma 11. The following assertions hold:

(1) If $\mu=12$, then $d \leq 5$.
(2) If $\mu=6,8,10$, then $d \leq 6$.

Proof. We have $c_{3}-b_{3} \geq c_{2}-b_{2}+20, \ldots, c_{i}-b_{i} \geq$ $c_{i-1}-b_{i-1}+20$. Summing up the inequalities termwise yields $c_{i}-b_{i} \geq c_{2}-b_{2}+(i-2) \cdot 20$.

If $\mu=12$, then, by Lemma 3, we have $b_{2} \leq 31$ and $c_{3}-b_{3} \geq 12-b_{2}+20$. Therefore, $d \leq 5$.

If $\mu=6$, then, by Lemma 3, we have $b_{2} \leq 28, c_{4}-$ $b_{4} \geq 46-b_{2}$, and $d \leq 7$. If $d=7$, then $c_{5}-b_{5} \geq 6-28+60$, a contradiction.

If $\mu=10$, then, by Lemma 3, we have $b_{2} \leq 36$. Therefore, $c_{4}-b_{4} \geq 50-b_{2}$ and $d \leq 7$. If $d=7$, we obtain $c_{5}-b_{5} \geq 10-36+60$. Therefore, $b_{5} \leq 2$ and $b_{5} b_{6}$ is not divided by 10 , a contradiction.

If $\mu=8$, then $k_{2}=60 \cdot 23$ and, by Lemma 3, we have $b_{2} \leq 41$. Therefore, $\mathrm{c}_{4}-b_{4} \geq 48-b_{2}$ and $d \leq 7$. If $d=7$, then $\mathrm{c}_{5}-b_{5} \geq 8-41+60=37$. Therefore, $b_{5} \leq 4$. Since $b_{5} b_{6}$ is divided by 8 , we have $b_{5}=4 ; b_{6}=2 ; b_{2}=$ $c_{5}=41 ;$ and the numbers b_{3}, c_{4}, and c_{6} are divided by 8. Moreover, $c_{3}-b_{3}=-13$ and $c_{4}-b_{4}=7$. Now the pair $\left(b_{3}, c_{3}\right)$ coincides with $(40,27),(32,19)$, or $(24$, $11)$, a contradiction to the fact that c_{3} divides 60 .

Lemma 12. If $d \in\{5,6\}$, then there are no admissible intersection arrays.

Proof. Elementary computer calculations. The lemma, together with the theorem, is proved.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 12-01-00012 and joint project no. 12-01-91155 with the National Science Fund of China), by the Branch of Mathematics of the Russian Academy of Sciences (project no. 12-T-1-1003), and by the Ural Branch of the Russian Academy of Sciences jointly with the Siberian Branch of the Russian Academy of Sciences (project no. 12-S-1-1018) and with the National Academy of Sciences of Belarus (project no. 12-S-1-1009).

REFERENCES

1. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Dis-tance-Regular Graphs (Springer-Verlag, Berlin, 1989).
2. F. Buekenhout and X. Hubaut, J. Algebra 45, 391-434 (1977).
3. V. V. Kabanov, A. A. Makhnev, and D. V. Paduchikh, Tr. Inst. Mat. Mekh. 16 (23), 105-116 (2010).
4. A. A. Makhnev, Diskret. Anal. Issled. Oper. 3 (3), 7183 (1996).
5. A. E. Brouwer and W. H. Haemers, http://www. win.tue.nl/aeb/
6. A. Jurisic, Discrete Math. 264 (1-3), 127-148 (2003).

Translated by I. Ruzanova

[^0]: ${ }^{a}$ Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 16, Yekaterinburg, 620219 Russia
 ${ }^{b}$ Ural Federal University,
 ul. Mira 19, Yekaterinburg, 620002 Russia
 e-mail: makhnev@imm.uran.ru

