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We consider undirected graphs without loops or
multiple edges. If а and b are vertices in a graph Γ, then
d(a, b) denotes the distance between а and b, and Γi(а)
denotes the subgraph of Γ induced by the set of vertices
of Γ that are a distance of i away from а. The subgraph
Γ1(а) is called the neighborhood of a and is denoted
by [а]. By а⊥ we denote the subgraph that is the ball of
radius 1 centered at а. Let � be a family of graphs. A
graph Γ is said to be a locally ��graph if [а] ∈ � for
any vertex a ∈ Γ.

Γ is called a regular graph of degree k if [а] contains
precisely k vertices for any vertex а in Γ. A graph Γ is
said to be an edge�regular graph with parameters (v, k, λ)
if Γ is a regular graph of degree k on v vertices and each
of its edges lies in λ triangles. Γ is called an amply reg�
ular graph with parameters (v, k, λ, μ) if Γ is an edge�
regular graph with the corresponding parameters and
the subgraph [а] ∩ [b] contains μ vertices in the case
d(a, b) = 2. An amply regular graph of diameter 2 is
called a strongly regular graph.

A graph Γ of diameter d is said to be antipodal if the
relation of coincidence or being a distance of d apart
on its vertex set is an equivalence relation. An antipo�
dal quotient Γ' is a graph whose vertices are the antip�
odal classes of Γ and two classes are adjacent if a vertex
of one class is adjacent to a vertex of the other class. An
antipodal graph Γ is called an r�covering (of its antip�
odal quotient) if each of its antipodal classes contains
precisely r vertices.

Let  denote a complete n�partite graph with

parts of orders m1, m2, …, mn. If m1 = m2 = … mn = m,
then this graph is denoted by Kn × m.

If vertices u and w are separated by a distance of i
in Γ, then bi(u, w) (ci(u, w)) denotes the number of ver�
tices in the intersection of Γi + 1(u) (Γi – 1(u)) with [w].

Km1 … mn, ,

A graph of diameter d is called a distance�regular
graph with an intersection array {b0, …, bd – 1; c1, …, cd}
if bi(u, w) and ci(u, w) are independent of the choice of
vertices u and w separated by the distance i. Let ai =
k – bi – ci.

Various classes of distance�regular graphs whose
local subgraphs are isomorphic to a given strongly reg�
ular graph were investigated in [1]. An issue of special
interest is locally Δ�graphs, where Δ is a strongly regu�
lar graph with λ = 1. The known strongly regular graph
with λ = 1 is the point graph of the generalized quad�
rangle GQ(2, t) with t = 1, 2, 4 or a graph with param�
eters (81, 20, 1, 6), (243, 22, 1, 2), or (729, 112, 1, 20).

Thus far, the distance�regular graphs whose local
subgraphs are isomorphic to a given strongly regular
graph with λ = 1 and v ≤ 81 have been classified
(see [2, 3]).

Proposition. Let Γ be a distance�regular graph whose
local subgraphs are isomorphic to a given strongly regu�
lar graph Δ with λ = 1 and v ≤ 81. Then one of the fol�
lowing assertions holds:

(1) Δ is a (3 × 3)�lattice and Γ is the complement of a
(4 × 4)�lattice or the Johnson graph J (6, 3).

(2) Δ is the point graph of the generalized quadrangle
GQ(2, 2) and Γ is the complement of the triangular
graph T(8), a strongly regular graph with parameters
(36, 15, 6, 6), or a Taylor graph with the intersection
array {15, 8, 1; 1, 8, 15}.

(3) Δ is the point graph of the generalized quadrangle
GQ(2, 4) and Γ is a strongly regular graph with parame�
ters (64, 27, 10, 12) or a Taylor graph with the intersec�
tion array {27, 16, 1; 1, 16, 27}.

(4) Δ is a strongly regular graph with parameters
(81, 20, 1, 6) and Γ is a distance�regular graph with the
intersection array {81, 60, 1; 1, 20, 81}.

In this work, we classify the distance�regular graphs
whose local subgraphs are isomorphic to a strongly
regular graph with parameters (115, 18, 1, 3).

Theorem. Let Γ be a distance�regular graph whose
local subgraphs are strongly regular with parameters
(115, 18, 1, 3). Then one of the following assertions
holds:

On Graphs Whose Local Subgraphs Are Strongly Regular
with Parameters (115, 18, 1, 3)
Corresponding Member of the RAS A. A. Makhneva, b

Received March 4, 2013

DOI: 10.1134/S1064562413040376

a Krasovskii Institute of Mathematics and Mechanics, 
Ural Branch, Russian Academy of Sciences, 
ul. S. Kovalevskoi 16, Yekaterinburg, 620219 Russia
b Ural Federal University,
ul. Mira 19, Yekaterinburg, 620002 Russia
e�mail: makhnev@imm.uran.ru

MATHEMATICS



DOKLADY MATHEMATICS  Vol. 88  No. 1  2013

ON GRAPHS WHOSE LOCAL SUBGRAPHS 469

(1) Γ is a strongly regular graph with parameters
(576, 115, 18, 24), (484, 115, 18, 30), or (392, 115,
18, 40).

(2) The diameter of Γ is 3, and Γ has the intersection
array {115, 96, 8; 1, 8, 92} and the spectrum 1151, 23217,
3713, –9805.

(3) The diameter of Γ is 4 and Γ has the intersection

array 115, 96, , 1; 1, , 96, 115 , where

r ∈ {2, 4, 5}.
The graph from assertion (3) in the theorem is an

AТ4(3, 5, r) graph (see [6]). For such a graph, the sec�
ond neighborhood of a vertex is a distance�regular

graph with the intersection array 75, 64, ,

1; 1, , 64, 75 .

Below are some auxiliary results.
Lemma 1 ([4, Lemma 3.1]). Let Γ be a strongly reg�

ular graph with parameters (v, k, λ, μ). Then either
k = 2μ and λ = μ – 1 (so�called half case) or the non�
principal eigenvalues n – m and –m of Γ are integers,
where n2 = (λ – μ)2 + 4(k – μ), n – λ + μ = 2m, and

the multiplicity n – m is equal to . Fur�

thermore, if m is an integer larger than 1, then m – 1
divides k – λ – 1 and

Lemma 2. Let Γ be a strongly regular graph with
parameters (v, k, λ, μ), Δ be an induced subgraph on N
vertices with M edges and vertex degrees d1, …, dN. Then

where xi is the number of vertices in Γ – Δ that are adja�
cent to precisely i vertices in Δ.

Lemma 3. Let Γ be a strongly regular graph with
parameters (115, 18, 1, 3) and eigenvalues 3 and –5,
Δ be a regular subgraph of Γ of degree 3 on n vertices,
Xi be the set of vertices from Γ – Δ adjacent to precisely i
vertices in Δ, and xi = |Xi|. Then the following assertions
hold:
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(1)  = 115 – n,  = 15n, xi =

, and x0 + xi = 115 + .

(2) n ≤ 40 and we have nx0 ≤

.

(3) If n = |X0|, then n ≤ 20.

Proof. By Lemma 2, we have  = 115 – n,

 = 15n, xi =  + 3  –

3n = . Therefore, x0 + xi = 115 +

.

We have –5 ≤ 3 –  ≤ 3. Therefore, 23n ≤ 8 ·

115 and n ≤ 40. Moreover, if n = 40, each vertex from

Γ – Δ id adjacent to precisely  = 8 vertices

from Δ.
Since there are no edges between Δ and X0, by

Proposition 4.6.1 from [5], we have nx0 ≤

, where θ2 = –5 and θ1 = 3

are nonprincipal eigenvalues of Γ. It follows that nx0 ≤

.

If n = x0, we have 19n ≤ 4(115 – n) and n ≤ 20.
Lemma 4. Let Γ be a distance�regular graph of diam�

eter d ≥ 3 whose local subgraphs are strongly regular with
parameters (115, 18, 1, 3), and let 0 = k > θ1 > … > θd
be the eigenvalues of Γ. Then θ1 ≤ 23 and θd ≥ –25.

Proof. By Terwilliger’s theorem [1, Theorem 4.4.3],

we have ⎯5 ≥ b– = –1 –  and 3 ≤ b+ = –1 –

. Therefore, θ1 ≤ 23 and θd ≥ –25.

In what follows, let Γ be a distance�regular graph of
diameter d whose local subgraphs are strongly regular
with parameters (115, 18, 1, 3). We fix a vertex u in Γ
and set ki = |Γi(u)|.

Lemma 5. The following assertions hold:
(1) If the diameter of Γ is 2, then Γ has the parame�

ters (576, 115, 18, 24), (484, 115, 18, 30), or (392, 115,
18, 40).
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(2) If the diameter of Γ is larger than 2, then μ ∈
{6, 8, 10, 12, 16, 20, 24, 30, 32, 40}.

(3) If the diameter of Γ is larger than 3, then μ ∈
{6, 8, 10, 12, 16, 20}.

(4) If the diameter of Γ is larger than 4, then μ ∈
{6, 8, 10, 12}.

Proof. By assumption, k = 115 and λ = 18. If the
diameter of Γ is 2, then, by Lemma 1, the number (λ –
μ)2 + 4(k – μ) is the square of a positive integer n.
Therefore, (μ – 20)2 + 384 = n2 and (μ, n) ∈ {(10, 22),
(16, 20), (24, 20), (30, 22), (40, 28)}. It follows that Γ
has the eigenvalues 15, –7; 11, –9; 7, –13; 5, –17; or
3, –25. In the first and second cases, the multiplicities
of the eigenvalues are not integer. Therefore, Γ has the
parameters (576, 115, 18, 24), (484, 115, 18, 30), or
(392, 115, 18, 40).

Let the diameter of Γ be larger than 2. By Lemma 3,
we have μ ≤ 40. Since μ is an even divisor of 115 · 96,
we have μ ∈ {6, 8, 10, 12, 16, 20, 24, 30, 32, 40}.

Let the diameter of Γ be larger than 3 and u, w, x, y,
z be a geodesic 4�path in Γ. Then there are no edges in
the graph [х] between [u] ∩ [х] and [х] ∩ [z] and, by
Lemma 3, we have μ ≤ 20. From this, μ ∈ {6, 8, 10, 12,
16, 20}.

Let the diameter of Γ be larger than 4. Then  ≤

с3 ≤ b2 and μ ≠ 20. If μ = 16, then, by Lemma 3, b2 ≤ 24
and c3 ≥ 24. It follows that d = 5 and c3 = b2 = 24. Fur�
thermore, c3 – b3 ≥ c2 – b2 + a1 + 2. Therefore, b3 ≤ 12,
a contradiction to b3 ≥ c2.

Remark 1. Let Δ be a strongly regular graph with
parameters (576, 115, 18, 24), (484, 115, 18, 30), or
(392, 115, 18, 40), and let Γ be a distance�regular
graph of diameter d that is an r�covering of Δ. Then
μΓ ≥ 6. If d = 5, then Γ has the intersection array {115,
96, t(r – 1), 24, 1; 1, 24, t, 96, 115}, {115, 96, t(r – 1),
30, 1; 1, 30, t, 96, 115}, or {115, 96, t(r – 1), 40, 1; 1,
40, t, 96, 115}. In any case, there are no admissible
arrays.

If d = 4, then Γ has the intersection array 115, 96,

, 1; 1, , 96, 115 , 115, 96, , 1;

1, , 96, 115 , or 115, 96, , 1; 1, , 96,

115 , the new eigenvalues θ1 and θ3 of Γ are the roots

of the quadratic equation x2 – λx – k = 0, and the mul�

3μ
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tiplicity of θ1 = 23 is m1 = . Therefore, v =

392r and Γ is an АТ4(3, 5, r) graph.
Lemma 6. The parameter μ is at most 20. 
Proof. Let μ > 20. By Lemma 5, the diameter of Γ

is 3 and μ ∈ {24, 30, 32, 40}.
If μ = 40, then k2 = 23 · 12 = 276. By Lemma 3, we

have 192b2 ≤ 30(115 – b2). Therefore, b2 ≤ 8, с3 ≥ 40 –
b2 + 20 and c3 ∈ {60, 69, 72, 84, 92, 96, 115}. From
this, Γ has the intersection array {115, 96, b2; 1, 40, c3}.
In any case, there are no admissible intersection
arrays.

Let μ = 32. Then k2 = 23 · 15 = 345 and, by Lemma 3,
we have 192 · 2b2 ≤ 83(115 – b2). Therefore, b2 ≤ 10,
b2 is odd, с3 ≥ 32 – b2 + 20, c3 is odd, c3 ∈ {45, 69, 75,
105, 115}, and Γ has the intersection array {115, 96, b2;
1, 32, c3}. In any case, there are no admissible intersec�
tion arrays.

Let μ = 30. Then k2 = 16 · 23 = 368 and, by Lemma
3, we have 192 · 3b2 ≤ 17(115 – b2) · 8. Therefore,
b2 ≤ 12, c3 ≥ 30 – b2 + 20. Hence, Γ has the intersection
array {115, 96, b2; 1, 30, с3}. In the cases b2 = 12, c3 = 92
and b2 = 5, с3 = 92, the graph has the integer eigenval�
ues 23, 1, –25 and 23, 3, –20. In any case, there are no
admissible intersection arrays.

Let μ = 24. Then k2 = 23 · 20 = 460 and, by Lemma
3, we have 192 · 3b2 ≤ 91(115 – b2) · 2. Therefore,
b2 ≤ 16, c3 ≥ 24 – b2 + 20. Hence, Γ has the intersec�
tion array {115, 96, b2; 1, 24, c3}. In the cases b2 = 8,
с3 = 92 and b2 = 14, c3 = 92, the graph has the integer
eigenvalues 23, 3, –17 and 23, 1, –21. In any case,
there are no admissible intersection arrays.

Lemma 7. If the diameter of Γ is 3, then Γ has the
intersection array {115, 96, 8; 1, 8, 92} and the spectrum
1151, 23217, 3713, –9805.

Proof. Let the diameter of Γ be equal to 3.
Let μ = 20. Then k2 = 24 · 23 = 552 and, by Lemma 3,

we have 19b2 ≤ 4(115 – b2). Therefore, b2 ≤ 20,
c3 ≥ 20 – b2 + 20. Hence, Γ has the intersection array
{115, 96, b2; 1, 20, c3}. If b2 = 10 and с3 = 92, then the
graph has the integer eigenvalues 23, 3, –15. In any
case, there are no admissible intersection arrays.

The cases μ = 10, 12, 16 are treated in a similar
fashion.

Let μ = 8. Then k2 = 60 · 23 = 1380 and, by Lemma 3,
we have 192b2 ≤ 107(115 – b2) · 2. Therefore, b2 ≤ 41.
There is the unique admissible intersection array {115,
96, 8; 1, 8, 92} and Γ has the spectrum 1151, 23217,
3713, –9805.

Let μ = 6. Then k2 = 80 · 23 and, in the notation of
Lemma 3, we obtain x2 = 9, x0 + x1 = 100, and х1 = 72.
Therefore, b2 ≤ 28 and Γ has the intersection array
{115, 96, b2; 1, 6, c3}. In any case, there are no admis�
sible intersection arrays. The lemma is proved.

Let d ≥ 4. Fix a geodesic 4�path u, w, х, at, у, z in Γ.

r 1–( )v

2
λθ1
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Lemma 8. If μ = 20, then Γ has the intersection array
{115, 96, 20, 1; 1, 20, 96, 115}.

Proof. Let μ = 20. Then k2 = 552. By Lemma 3, we
have b2 = 20 and [x] ∩ Γ3(u) = [x] ∩ [z]. Furthermore,
[x] ∩ Γ2(u) is contained in Γ2(z). Therefore, Γ4(u) =
[z] and Γ has the intersection array {115, 96, 20, 1; 1,
20, 96, 115}.

Lemma 9. If μ ≠ 20, then μ ≤ 10.

Proof. Let μ = 16. Then k2 = 30 · 23 = 690 and, by
Lemma 4, we have 16 ≤ b2 ≤ 24 and с3 – b3 ≥ 16 – b2 + 20.
If с3 ≤ 90, then θ1 > 25, a contradiction. Therefore,
c3 ∈ {92, 95, 96}.

If c3 = 95, then c4 is divided by 16, b2 = 19, b3 = 16,
k3 = 6 · 23, and Γ has the intersection array {115, 96,
19, 16; 1, 16, 95, 96}, a contradiction to θ4 < –40.

If c3 = 92, then c4 is divided by 4, k3 = , and

b2 = 16, 18, 20, 22, 24. Therefore, с4 = 96, 100, 104,
108, 112. If с4 = 96, then either b2 = 16 and b3 is
divided by 4, b2 = 20 and b3 = 16, or b2 = 24 and b3 is
divided by 8. If с4 = 100, then either b2 = 20 and b3 is
divided by 4 or b3 is divided by 5. If с4 = 104, we have
b2 = 16 and b3 = 13. If с4 = 108, then either b2 = 16 and
b3 = 9 or b2 = 24 and b3 is divided by 6. In any case,
θ1 > 31.

If c3 = 96, then c4 = 115. If the case of the intersec�
tion array {115, 96, 24, 1; 1, 16, 96, 115}, the graph has

the spectrum 1151, 23105, 3345, –5483, –2546, but  = .

In any case, there are no admissible intersection
arrays.

The case μ = 12 is treated in a similar manner.

Lemma 10. If μ ≤ 10, then Γ has the intersection
array {115, 96, 30, 1; 1, 10, 96, 115} or {115, 96, 32, 1;
1, 8, 96, 115}.

Proof. Let μ = 10. Then k2 = 48 · 23 and, by
Lemma 4, we have 10 ≤ b2 ≤ 36 and b2 is divided by 5.
If c3 ≤ 90, then θ1 > 27, a contradiction. Therefore,
c3 ∈ {92, 96}; b2 = 10, 15, 20, 25, 30, 35; and с4 is
divided by 5.

If с3 = 92, then k3 = 12b2. Therefore, с4 = 100, 105,
110, 115. If с4 = 100, the number b2b3 is divided by 25.
If с4 = 105, b2b3 is divided by 35. If с4 = 110, b2b3 is
divided by 55. If с4 = 115, b2b3 is divided by 115. In any
case, θ1 > 25.

If c3 = 96, then k3 =  and с4 = 100, 105, 110,

115. If с4 = 100, then the number b2b3 is divided by
200. If с4 = 105, the number b2b3 is divided by 210. If
с4 = 110, b2b3 is divided by 220. If с4 = 115, b2b3 is
divided by 10. In this case, Γ has the intersection array
{115, 96, 30, 1; 1, 10, 96, 115} and the spectrum 1151,
23210, 3345, –5966, –2546.

15b2

2
���������

p44
4 1

2
��

23b2

2
���������

Let μ = 8. Then k2 = 60 · 23 and, by Lemma 4, we
have 8 ≤ b2 ≤ 41. If c3 ≤ 90, then θ1 > 23, a contradic�
tion. Therefore, c3 ∈ {92, 93, 95, 96}.

If c3 = 95, then с4 is divided by 8; b2 = 19; b3 = 8,
16; k3 = 12 · 23; and Γhas the intersection array {115,
96, 19, b3; 1, 12, 95, 96}, a contradiction to θ1 > 36.

If с3 = 93, then с4 is divided by 8; b2 = 31; b3 = 8,
16, 24; k3 = 20 · 23; and Γ has the intersection array
{115, 96, 31, b3; 1, 12, 93, 96}, a contradiction to θ1 > 34.

If c3 = 92, then с4 is even and k3 = 15b2, a contra�
diction to θ1 > 23.

If c3 = 96, then k3 = . In this case, Γ has the

intersection array {115, 96, 32, 1; 1, 8, 96, 115} and the
spectrum 1151, 23280, 3345, –51288, –2546.

Let μ = 6. Then k2 = 80 · 23 and, by Lemma 4, we
have 6 ≤ b2 ≤ 28. If c3 ≤ 90, then θ1 > 24, a contradic�
tion. Therefore, c3 ∈ {92, 95, 96}.

If с3 = 95, then с4 is divided by 6; b2 = 19; b3 = 6,
12, 18; k3 = 16 · 23; and Γ has the intersection array
{115, 96, 19, b3; 1, 6, 95, 96}, a contradiction to θ1 > 34.

If c3 = 92, then с4 is divided by 3 and k3 = 20b2, a
contradiction to θ1 > 24.

If c3 = 96, then k3 = . In this case, there are

no admissible intersection arrays.

Lemma 11. The following assertions hold:

(1) If μ = 12, then d ≤ 5.

(2) If μ = 6, 8, 10, then d ≤ 6.

Proof. We have c3 – b3 ≥ c2 – b2 + 20, …, ci – bi ≥
ci – 1 – bi – 1 + 20. Summing up the inequalities term�
wise yields ci – bi ≥ c2 – b2 + (i – 2) · 20.

If μ = 12, then, by Lemma 3, we have b2 ≤ 31 and
c3 – b3 ≥ 12 – b2 + 20. Therefore, d ≤ 5.

If μ = 6, then, by Lemma 3, we have b2 ≤ 28, с4 –
b4 ≥ 46 – b2, and d ≤ 7. If d = 7, then c5 – b5 ≥ 6 – 28 + 60,
a contradiction.

If μ = 10, then, by Lemma 3, we have b2 ≤ 36.
Therefore, с4 – b4 ≥ 50 – b2 and d ≤ 7. If d = 7, we
obtain с5 – b5 ≥ 10 – 36 + 60. Therefore, b5 ≤ 2 and b5b6
is not divided by 10, a contradiction.

If μ = 8, then k2 = 60 · 23 and, by Lemma 3, we have
b2 ≤ 41. Therefore, с4 – b4 ≥ 48 – b2 and d ≤ 7. If d = 7,
then с5 – b5 ≥ 8 – 41 + 60 = 37. Therefore, b5 ≤ 4.
Since b5b6 is divided by 8, we have b5 = 4; b6 = 2; b2 =
c5 = 41; and the numbers b3, c4, and c6 are divided by
8. Moreover, c3 – b3 = –13 and c4 – b4 = 7. Now the
pair (b3, c3) coincides with (40, 27), (32, 19), or (24,
11), a contradiction to the fact that c3 divides 60.

115b2

8
�����������

115b2

6
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Lemma 12. If d ∈ {5, 6}, then there are no admissible
intersection arrays.

Proof. Elementary computer calculations. The
lemma, together with the theorem, is proved.
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